ﻻ يوجد ملخص باللغة العربية
Training deep neural networks is challenging when large and annotated datasets are unavailable. Extensive manual annotation of data samples is time-consuming, expensive, and error-prone, notably when it needs to be done by experts. To address this issue, increased attention has been devoted to techniques that propagate uncertain labels (also called pseudo labels) to large amounts of unsupervised samples and use them for training the model. However, these techniques still need hundreds of supervised samples per class in the training set and a validation set with extra supervised samples to tune the model. We improve a recent iterative pseudo-labeling technique, Deep Feature Annotation (DeepFA), by selecting the most confident unsupervised samples to iteratively train a deep neural network. Our confidence-based sampling strategy relies on only dozens of annotated training samples per class with no validation set, considerably reducing user effort in data annotation. We first ascertain the best configuration for the baseline -- a self-trained deep neural network -- and then evaluate our confidence DeepFA for different confidence thresholds. Experiments on six datasets show that DeepFA already outperforms the self-trained baseline, but confidence DeepFA can considerably outperform the original DeepFA and the baseline.
Recent results in end-to-end automatic speech recognition have demonstrated the efficacy of pseudo-labeling for semi-supervised models trained both with Connectionist Temporal Classification (CTC) and Sequence-to-Sequence (seq2seq) losses. Iterative
Federated learning enables multiple clients, such as mobile phones and organizations, to collaboratively learn a shared model for prediction while protecting local data privacy. However, most recent research and applications of federated learning ass
In this paper we revisit the idea of pseudo-labeling in the context of semi-supervised learning where a learning algorithm has access to a small set of labeled samples and a large set of unlabeled samples. Pseudo-labeling works by applying pseudo-lab
Domain adaptation helps transfer the knowledge gained from a labeled source domain to an unlabeled target domain. During the past few years, different domain adaptation techniques have been published. One common flaw of these approaches is that while
By transferring knowledge learned from seen/previous tasks, meta learning aims to generalize well to unseen/future tasks. Existing meta-learning approaches have shown promising empirical performance on various multiclass classification problems, but