ﻻ يوجد ملخص باللغة العربية
Recent results in end-to-end automatic speech recognition have demonstrated the efficacy of pseudo-labeling for semi-supervised models trained both with Connectionist Temporal Classification (CTC) and Sequence-to-Sequence (seq2seq) losses. Iterative Pseudo-Labeling (IPL), which continuously trains a single model using pseudo-labels iteratively re-generated as the model learns, has been shown to further improve performance in ASR. We improve upon the IPL algorithm: as the model learns, we propose to iteratively re-generate transcriptions with hard labels (the most probable tokens), that is, without a language model. We call this approach Language-Model-Free IPL (slimIPL) and give a resultant training setup for low-resource settings with CTC-based models. slimIPL features a dynamic cache for pseudo-labels which reduces sensitivity to changes in relabeling hyperparameters and results in improves training stability. slimIPL is also highly-efficient and requires 3.5-4x fewer computational resources to converge than other state-of-the-art semi/self-supervised approaches. With only 10 hours of labeled audio, slimIPL is competitive with self-supervised approaches, and is state-of-the-art with 100 hours of labeled audio without the use of a language model both at test time and during pseudo-label generation.
Linguistic sequence labeling is a general modeling approach that encompasses a variety of problems, such as part-of-speech tagging and named entity recognition. Recent advances in neural networks (NNs) make it possible to build reliable models withou
Social media has effectively become the prime hub of communication and digital marketing. As these platforms enable the free manifestation of thoughts and facts in text, images and video, there is an extensive need to screen them to protect individua
Many efforts have been made to facilitate natural language processing tasks with pre-trained language models (LMs), and brought significant improvements to various applications. To fully leverage the nearly unlimited corpora and capture linguistic in
We propose to pre-train a unified language model for both autoencoding and partially autoregressive language modeling tasks using a novel training procedure, referred to as a pseudo-masked language model (PMLM). Given an input text with masked tokens
Training deep neural networks is challenging when large and annotated datasets are unavailable. Extensive manual annotation of data samples is time-consuming, expensive, and error-prone, notably when it needs to be done by experts. To address this is