ترغب بنشر مسار تعليمي؟ اضغط هنا

Singularly perturbed dynamics of the tippedisk

83   0   0.0 ( 0 )
 نشر من قبل Simon Sailer
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The tippedisk is a mathematical-mechanical archetype for a peculiar friction-induced instability phenomenon leading to the inversion of an unbalanced spinning disk, being reminiscent to (but different from) the well-known inversion of the tippetop. A reduced model of the tippedisk, in the form of a three-dimensional ordinary differential equation, has been derived recently, followed by a preliminary local stability analysis of stationary spinning solutions. In the current paper, a global analysis of the reduced system is pursued using the framework of singular perturbation theory. It is shown how the presence of friction leads to slow-fast dynamics and the creation of a two-dimensional slow manifold. Furthermore, it is revealed that a bifurcation scenario involving a homoclinic bifurcation and a Hopf bifurcation leads to an explanation of the inversion phenomenon. In particular, a closed-form condition for the critical spinning speed for the inversion phenomenon is derived. Hence, the tippedisk forms an excellent mathematical-mechanical problem for the analysis of global bifurcations in singularly perturbed dynamics.



قيم البحث

اقرأ أيضاً

175 - Yan Lv , A. J. Roberts 2011
An averaging method is applied to derive effective approximation to the following singularly perturbed nonlinear stochastic damped wave equation u u_{tt}+u_t=D u+f(u)+ u^alphadot{W} on an open bounded domain $DsubsetR^n$,, $1leq nleq 3$,. Here $ u>0 $ is a small parameter characterising the singular perturbation, and $ u^alpha$,, $0leq alphaleq 1/2$,, parametrises the strength of the noise. Some scaling transformations and the martingale representation theorem yield the following effective approximation for small $ u$, u_t=D u+f(u)+ u^alphadot{W} to an error of $ord{ u^alpha}$,.
81 - Nikita Nikolaev 2020
The singularly perturbed Riccati equation is the first-order nonlinear ODE $hbar partial_x f = af^2 + bf + c$ in the complex domain where $hbar$ is a small complex parameter. We prove an existence and uniqueness theorem for exact solutions with presc ribed asymptotics as $hbar to 0$ in a halfplane. These exact solutions are constructed using the Borel-Laplace method; i.e., they are Borel summations of the formal divergent $hbar$-power series solutions. As an application, we prove existence and uniqueness of exact WKB solutions for the complex one-dimensional Schrodinger equation with a rational potential.
We consider smooth systems limiting as $epsilon to 0$ to piecewise-smooth (PWS) systems with a boundary-focus (BF) bifurcation. After deriving a suitable local normal form, we study the dynamics for the smooth system with $0 < epsilon ll 1$ using a c ombination of geometric singular perturbation theory and blow-up. We show that the type of BF bifurcation in the PWS system determines the bifurcation structure for the smooth system within an $epsilon-$dependent domain which shrinks to zero as $epsilon to 0$, identifying a supercritical Andronov-Hopf bifurcation in one case, and a supercritical Bogdanov-Takens bifurcation in two other cases. We also show that PWS cycles associated with BF bifurcations persist as relaxation cycles in the smooth system, and prove existence of a family of stable limit cycles which connects the relaxation cycles to regular cycles within the $epsilon-$dependent domain described above. Our results are applied to models for Gause predator-prey interaction and mechanical oscillation subject to friction.
Boundary equilibria bifurcation (BEB) arises in piecewise-smooth systems when an equilibrium collides with a discontinuity set under parameter variation. Singularly perturbed BEB refers to a bifurcation arising in singular perturbation problems which limit as some $epsilon to 0$ to piecewise-smooth (PWS) systems which undergo a BEB. This work completes a classification for codimension-1 singularly perturbed BEB in the plane initiated by the present authors in [19], using a combination of tools from PWS theory, geometric singular perturbation theory (GSPT) and a method of geometric desingularization known as blow-up. After deriving a local normal form capable of generating all 12 singularly perturbed BEBs, we describe the unfolding in each case. Detailed quantitative results on saddle-node, Andronov-Hopf, homoclinic and codimension-2 Bogdanov-Takens bifurcations involved in the unfoldings and classification are presented. Each bifurcation is singular in the sense that it occurs within a domain which shrinks to zero as $epsilon to 0$ at a rate determined by the rate at which the system loses smoothness. Detailed asymptotics for a distinguished homoclinic connection which forms the boundary between two singularly perturbed BEBs in parameter space are also given. Finally, we describe the explosive onset of oscillations arising in the unfolding of a particular singularly perturbed boundary-node (BN) bifurcation. We prove the existence of the oscillations as perturbations of PWS cycles, and derive a growth rate which is polynomial in $epsilon$ and dependent on the rate at which the system loses smoothness. For all the results presented herein, corresponding results for regularized PWS systems are obtained via the limit $epsilon to 0$.
209 - Nikita Nikolaev 2021
We prove an existence and uniqueness theorem for exact WKB solutions of general singularly perturbed linear second-order ODEs in the complex domain. These include the one-dimensional time-independent complex Schrodinger equation. Notably, our results are valid both in the case of generic WKB trajectories as well as closed WKB trajectories. We also explain in what sense exact and formal WKB solutions form a basis. As a corollary of the proof, we establish the Borel summability of formal WKB solutions for a large class of problems, and derive an explicit formula for the Borel transform.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا