ﻻ يوجد ملخص باللغة العربية
An averaging method is applied to derive effective approximation to the following singularly perturbed nonlinear stochastic damped wave equation u u_{tt}+u_t=D u+f(u)+ u^alphadot{W} on an open bounded domain $DsubsetR^n$,, $1leq nleq 3$,. Here $ u>0$ is a small parameter characterising the singular perturbation, and $ u^alpha$,, $0leq alphaleq 1/2$,, parametrises the strength of the noise. Some scaling transformations and the martingale representation theorem yield the following effective approximation for small $ u$, u_t=D u+f(u)+ u^alphadot{W} to an error of $ord{ u^alpha}$,.
We explore the relation between fast waves, damping and imposed noise for different scalings by considering the singularly perturbed stochastic nonlinear wave equations u u_{tt}+u_t=D u+f(u)+ u^alphadot{W} on a bounded spatial domain. An asymptoti
We study the blowup behavior of a class of strongly perturbed wave equations with a focusing supercritical power nonlinearity in three spatial dimensions. We show that the ODE blowup profile of the unperturbed equation still describes the asymptotics
In our work we study non-variational, nonlinear singularly perturbed elliptic models enjoying a double degeneracy character with prescribed boundary value in a domain. In such a scenario, we establish the existence of solutions. We also prove that so
We consider nonlinear half-wave equations with focusing power-type nonlinearity $$ i pt_t u = sqrt{-Delta} , u - |u|^{p-1} u, quad mbox{with $(t,x) in R times R^d$} $$ with exponents $1 < p < infty$ for $d=1$ and $1 < p < (d+1)/(d-1)$ for $d geq 2$.
We prove an existence and uniqueness theorem for exact WKB solutions of general singularly perturbed linear second-order ODEs in the complex domain. These include the one-dimensional time-independent complex Schrodinger equation. Notably, our results