ﻻ يوجد ملخص باللغة العربية
The singularly perturbed Riccati equation is the first-order nonlinear ODE $hbar partial_x f = af^2 + bf + c$ in the complex domain where $hbar$ is a small complex parameter. We prove an existence and uniqueness theorem for exact solutions with prescribed asymptotics as $hbar to 0$ in a halfplane. These exact solutions are constructed using the Borel-Laplace method; i.e., they are Borel summations of the formal divergent $hbar$-power series solutions. As an application, we prove existence and uniqueness of exact WKB solutions for the complex one-dimensional Schrodinger equation with a rational potential.
We prove an existence and uniqueness theorem for exact WKB solutions of general singularly perturbed linear second-order ODEs in the complex domain. These include the one-dimensional time-independent complex Schrodinger equation. Notably, our results
The tippedisk is a mathematical-mechanical archetype for a peculiar friction-induced instability phenomenon leading to the inversion of an unbalanced spinning disk, being reminiscent to (but different from) the well-known inversion of the tippetop. A
The Painleve-IV equation has two families of rational solutions generated respectively by the generalized Hermite polynomials and the generalized Okamoto polynomials. We apply the isomonodromy method to represent all of these rational solutions by me
It is commonly known that the Fokker-Planck equation is exactly solvable only for some particular systems, usually with time-independent drift coefficients. To extend the class of solvable problems, we use the intertwining relations of SUSY Quantum M
We study a class of interacting, harmonically trapped boson systems at angular momentum L. The Hamiltonian leaves a L-dimensional subspace invariant, and this permits an explicit solution of several eigenstates and energies for a wide class of two-body interactions