ترغب بنشر مسار تعليمي؟ اضغط هنا

Developing and validating multi-modal models for mortality prediction in COVID-19 patients: a multi-center retrospective study

79   0   0.0 ( 0 )
 نشر من قبل Po-Chih Kuo
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The unprecedented global crisis brought about by the COVID-19 pandemic has sparked numerous efforts to create predictive models for the detection and prognostication of SARS-CoV-2 infections with the goal of helping health systems allocate resources. Machine learning models, in particular, hold promise for their ability to leverage patient clinical information and medical images for prediction. However, most of the published COVID-19 prediction models thus far have little clinical utility due to methodological flaws and lack of appropriate validation. In this paper, we describe our methodology to develop and validate multi-modal models for COVID-19 mortality prediction using multi-center patient data. The models for COVID-19 mortality prediction were developed using retrospective data from Madrid, Spain (N=2547) and were externally validated in patient cohorts from a community hospital in New Jersey, USA (N=242) and an academic center in Seoul, Republic of Korea (N=336). The models we developed performed differently across various clinical settings, underscoring the need for a guided strategy when employing machine learning for clinical decision-making. We demonstrated that using features from both the structured electronic health records and chest X-ray imaging data resulted in better 30-day-mortality prediction performance across all three datasets (areas under the receiver operating characteristic curves: 0.85 (95% confidence interval: 0.83-0.87), 0.76 (0.70-0.82), and 0.95 (0.92-0.98)). We discuss the rationale for the decisions made at every step in developing the models and have made our code available to the research community. We employed the best machine learning practices for clinical model development. Our goal is to create a toolkit that would assist investigators and organizations in building multi-modal models for prediction, classification and/or optimization.



قيم البحث

اقرأ أيضاً

119 - Samarth Bhatia 2021
As the second wave in India mitigates, COVID-19 has now infected about 29 million patients countrywide, leading to more than 350 thousand people dead. As the infections surged, the strain on the medical infrastructure in the country became apparent. While the country vaccinates its population, opening up the economy may lead to an increase in infection rates. In this scenario, it is essential to effectively utilize the limited hospital resources by an informed patient triaging system based on clinical parameters. Here, we present two interpretable machine learning models predicting the clinical outcomes, severity, and mortality, of the patients based on routine non-invasive surveillance of blood parameters from one of the largest cohorts of Indian patients at the day of admission. Patient severity and mortality prediction models achieved 86.3% and 88.06% accuracy, respectively, with an AUC-ROC of 0.91 and 0.92. We have integrated both the models in a user-friendly web app calculator, https://triage-COVID-19.herokuapp.com/, to showcase the potential deployment of such efforts at scale.
107 - Yukti Makhija 2021
Many countries are now experiencing the third wave of the COVID-19 pandemic straining the healthcare resources with an acute shortage of hospital beds and ventilators for the critically ill patients. This situation is especially worse in India with t he second largest load of COVID-19 cases and a relatively resource-scarce medical infrastructure. Therefore, it becomes essential to triage the patients based on the severity of their disease and devote resources towards critically ill patients. Yan et al. 1 have published a very pertinent research that uses Machine learning (ML) methods to predict the outcome of COVID-19 patients based on their clinical parameters at the day of admission. They used the XGBoost algorithm, a type of ensemble model, to build the mortality prediction model. The final classifier is built through the sequential addition of multiple weak classifiers. The clinically operable decision rule was obtained from a single-tree XGBoost and used lactic dehydrogenase (LDH), lymphocyte and high-sensitivity C-reactive protein (hs-CRP) values. This decision tree achieved a 100% survival prediction and 81% mortality prediction. However, these models have several technical challenges and do not provide an out of the box solution that can be deployed for other populations as has been reported in the Matters Arising section of Yan et al. Here, we show the limitations of this model by deploying it on one of the largest datasets of COVID-19 patients containing detailed clinical parameters collected from India.
During the coronavirus disease 2019 (COVID-19) pandemic, rapid and accurate triage of patients at the emergency department is critical to inform decision-making. We propose a data-driven approach for automatic prediction of deterioration risk using a deep neural network that learns from chest X-ray images and a gradient boosting model that learns from routine clinical variables. Our AI prognosis system, trained using data from 3,661 patients, achieves an area under the receiver operating characteristic curve (AUC) of 0.786 (95% CI: 0.745-0.830) when predicting deterioration within 96 hours. The deep neural network extracts informative areas of chest X-ray images to assist clinicians in interpreting the predictions and performs comparably to two radiologists in a reader study. In order to verify performance in a real clinical setting, we silently deployed a preliminary version of the deep neural network at New York University Langone Health during the first wave of the pandemic, which produced accurate predictions in real-time. In summary, our findings demonstrate the potential of the proposed system for assisting front-line physicians in the triage of COVID-19 patients.
89 - Tao Zhou , Huazhu Fu , Yu Zhang 2020
Early and accurate prediction of overall survival (OS) time can help to obtain better treatment planning for brain tumor patients. Although many OS time prediction methods have been developed and obtain promising results, there are still several issu es. First, conventional prediction methods rely on radiomic features at the local lesion area of a magnetic resonance (MR) volume, which may not represent the full image or model complex tumor patterns. Second, different types of scanners (i.e., multi-modal data) are sensitive to different brain regions, which makes it challenging to effectively exploit the complementary information across multiple modalities and also preserve the modality-specific properties. Third, existing methods focus on prediction models, ignoring complex data-to-label relationships. To address the above issues, we propose an end-to-end OS time prediction model; namely, Multi-modal Multi-channel Network (M2Net). Specifically, we first project the 3D MR volume onto 2D images in different directions, which reduces computational costs, while preserving important information and enabling pre-trained models to be transferred from other tasks. Then, we use a modality-specific network to extract implicit and high-level features from different MR scans. A multi-modal shared network is built to fuse these features using a bilinear pooling model, exploiting their correlations to provide complementary information. Finally, we integrate the outputs from each modality-specific network and the multi-modal shared network to generate the final prediction result. Experimental results demonstrate the superiority of our M2Net model over other methods.
78 - Qinghao Ye , Jun Xia , Guang Yang 2021
Artificial Intelligence (AI) has made leapfrogs in development across all the industrial sectors especially when deep learning has been introduced. Deep learning helps to learn the behaviour of an entity through methods of recognising and interpretin g patterns. Despite its limitless potential, the mystery is how deep learning algorithms make a decision in the first place. Explainable AI (XAI) is the key to unlocking AI and the black-box for deep learning. XAI is an AI model that is programmed to explain its goals, logic, and decision making so that the end users can understand. The end users can be domain experts, regulatory agencies, managers and executive board members, data scientists, users that use AI, with or without awareness, or someone who is affected by the decisions of an AI model. Chest CT has emerged as a valuable tool for the clinical diagnostic and treatment management of the lung diseases associated with COVID-19. AI can support rapid evaluation of CT scans to differentiate COVID-19 findings from other lung diseases. However, how these AI tools or deep learning algorithms reach such a decision and which are the most influential features derived from these neural networks with typically deep layers are not clear. The aim of this study is to propose and develop XAI strategies for COVID-19 classification models with an investigation of comparison. The results demonstrate promising quantification and qualitative visualisations that can further enhance the clinicians understanding and decision making with more granular information from the results given by the learned XAI models.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا