ﻻ يوجد ملخص باللغة العربية
Many countries are now experiencing the third wave of the COVID-19 pandemic straining the healthcare resources with an acute shortage of hospital beds and ventilators for the critically ill patients. This situation is especially worse in India with the second largest load of COVID-19 cases and a relatively resource-scarce medical infrastructure. Therefore, it becomes essential to triage the patients based on the severity of their disease and devote resources towards critically ill patients. Yan et al. 1 have published a very pertinent research that uses Machine learning (ML) methods to predict the outcome of COVID-19 patients based on their clinical parameters at the day of admission. They used the XGBoost algorithm, a type of ensemble model, to build the mortality prediction model. The final classifier is built through the sequential addition of multiple weak classifiers. The clinically operable decision rule was obtained from a single-tree XGBoost and used lactic dehydrogenase (LDH), lymphocyte and high-sensitivity C-reactive protein (hs-CRP) values. This decision tree achieved a 100% survival prediction and 81% mortality prediction. However, these models have several technical challenges and do not provide an out of the box solution that can be deployed for other populations as has been reported in the Matters Arising section of Yan et al. Here, we show the limitations of this model by deploying it on one of the largest datasets of COVID-19 patients containing detailed clinical parameters collected from India.
As the second wave in India mitigates, COVID-19 has now infected about 29 million patients countrywide, leading to more than 350 thousand people dead. As the infections surged, the strain on the medical infrastructure in the country became apparent.
The unprecedented global crisis brought about by the COVID-19 pandemic has sparked numerous efforts to create predictive models for the detection and prognostication of SARS-CoV-2 infections with the goal of helping health systems allocate resources.
Machine Learning (ML) models typically require large-scale, balanced training data to be robust, generalizable, and effective in the context of healthcare. This has been a major issue for developing ML models for the coronavirus-disease 2019 (COVID-1
COVID-19 pandemic has created an extreme pressure on the global healthcare services. Fast, reliable and early clinical assessment of the severity of the disease can help in allocating and prioritizing resources to reduce mortality. In order to study
The COVID-19 pandemic continues to have a devastating global impact, and has placed a tremendous burden on struggling healthcare systems around the world. Given the limited resources, accurate patient triaging and care planning is critical in the fig