ﻻ يوجد ملخص باللغة العربية
Oscillators based on levitated particles are promising for the development of ultrasensitive force detectors. The theoretical performance of levitated nanomechanical sensors is usually characterized by the so-called thermal noise limit force detection sensitivity, which does not exhibit spectral specificity in practical measurements. To characterize the actual detection performance, we propose a method for the force detection sensitivity calibration of a levitated nanomechanical sensor based on the harmonic Coulomb force. Utilizing the measured transfer function, we obtained the force detection sensitivity spectrum from the position spectrum. Although the thermal noise limit force detection sensitivity of the system reached $rmleft( {4.39 pm 0.62} right) times {10^{ - 20}} N/H{z^{1/2}}$ at $rm{2.4times10^{-6} mbar}$ with feedback cooling, the measured sensitivity away from the resonance was of the order of $rm10^{-17} N/Hz^{1/2}$ based on the existing detection noise level. The calibration method established in our study is applicable to the performance evaluation of any optical levitation system for high-sensitivity force measurements.
Nanomechanical resonators are widely operated as force and mass sensors with sensitivities in the zepto-Newton and yocto-gram regime, respectively. Their accuracy, however, is usually undermined by high uncertainties in the effective mass of the syst
Axion-like particles (ALPs) are predicted to mediate exotic interactions between spin and mass. We propose an ALP-searching experiment based on the levitated micromechanical oscillator, which is one of the most sensitive sensors for spin-mass forces
An ultra-sensitive opto-mechanical force sensor has been built and tested in the optics laboratory at INFN Trieste. Its application to experiments in the Dark Energy sector, such as those for Chameleon-type WISPs, is particularly attractive, as it en
Interferometric position detection of levitated particles is crucial for the centre-of-mass (CM) motion cooling and manipulation of levitated particles. In combination with balanced detection and feedback cooling, this system has provided picometer s
Atomic force microscope (AFM) users often calibrate the spring constants of cantilevers using functionality built into individual instruments. This is performed without reference to a global standard, which hinders robust comparison of force measurem