ترغب بنشر مسار تعليمي؟ اضغط هنا

Cluster-Promoting Quantization with Bit-Drop for Minimizing Network Quantization Loss

387   0   0.0 ( 0 )
 نشر من قبل Jung Hyun Lee
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Network quantization, which aims to reduce the bit-lengths of the network weights and activations, has emerged for their deployments to resource-limited devices. Although recent studies have successfully discretized a full-precision network, they still incur large quantization errors after training, thus giving rise to a significant performance gap between a full-precision network and its quantized counterpart. In this work, we propose a novel quantization method for neural networks, Cluster-Promoting Quantization (CPQ) that finds the optimal quantization grids while naturally encouraging the underlying full-precision weights to gather around those quantization grids cohesively during training. This property of CPQ is thanks to our two main ingredients that enable differentiable quantization: i) the use of the categorical distribution designed by a specific probabilistic parametrization in the forward pass and ii) our proposed multi-class straight-through estimator (STE) in the backward pass. Since our second component, multi-class STE, is intrinsically biased, we additionally propose a new bit-drop technique, DropBits, that revises the standard dropout regularization to randomly drop bits instead of neurons. As a natural extension of DropBits, we further introduce the way of learning heterogeneous quantization levels to find proper bit-length for each layer by imposing an additional regularization on DropBits. We experimentally validate our method on various benchmark datasets and network architectures, and also support a new hypothesis for quantization: learning heterogeneous quantization levels outperforms the case using the same but fixed quantization levels from scratch.



قيم البحث

اقرأ أيضاً

Mixed-precision quantization can potentially achieve the optimal tradeoff between performance and compression rate of deep neural networks, and thus, have been widely investigated. However, it lacks a systematic method to determine the exact quantiza tion scheme. Previous methods either examine only a small manually-designed search space or utilize a cumbersome neural architecture search to explore the vast search space. These approaches cannot lead to an optimal quantization scheme efficiently. This work proposes bit-level sparsity quantization (BSQ) to tackle the mixed-precision quantization from a new angle of inducing bit-level sparsity. We consider each bit of quantized weights as an independent trainable variable and introduce a differentiable bit-sparsity regularizer. BSQ can induce all-zero bits across a group of weight elements and realize the dynamic precision reduction, leading to a mixed-precision quantization scheme of the original model. Our method enables the exploration of the full mixed-precision space with a single gradient-based optimization process, with only one hyperparameter to tradeoff the performance and compression. BSQ achieves both higher accuracy and higher bit reduction on various model architectures on the CIFAR-10 and ImageNet datasets comparing to previous methods.
Neural network quantization enables the deployment of large models on resource-constrained devices. Current post-training quantization methods fall short in terms of accuracy for INT4 (or lower) but provide reasonable accuracy for INT8 (or above). In this work, we study the effect of quantization on the structure of the loss landscape. Additionally, we show that the structure is flat and separable for mild quantization, enabling straightforward post-training quantization methods to achieve good results. We show that with more aggressive quantization, the loss landscape becomes highly non-separable with steep curvature, making the selection of quantization parameters more challenging. Armed with this understanding, we design a method that quantizes the layer parameters jointly, enabling significant accuracy improvement over current post-training quantization methods. Reference implementation is available at https://github.com/ynahshan/nn-quantization-pytorch/tree/master/lapq
Many neural network quantization techniques have been developed to decrease the computational and memory footprint of deep learning. However, these methods are evaluated subject to confounding tradeoffs that may affect inference acceleration or resou rce complexity in exchange for higher accuracy. In this work, we articulate a variety of tradeoffs whose impact is often overlooked and empirically analyze their impact on uniform and mixed-precision post-training quantization, finding that these confounding tradeoffs may have a larger impact on quantized network accuracy than the actual quantization methods themselves. Because these tradeoffs constrain the attainable hardware acceleration for different use-cases, we encourage researchers to explicitly report these design choices through the structure of quantization cards. We expect quantization cards to help researchers compare methods more effectively and engineers determine the applicability of quantization techniques for their hardware.
We investigate the compression of deep neural networks by quantizing their weights and activations into multiple binary bases, known as multi-bit networks (MBNs), which accelerate the inference and reduce the storage for the deployment on low-resourc e mobile and embedded platforms. We propose Adaptive Loss-aware Quantization (ALQ), a new MBN quantization pipeline that is able to achieve an average bitwidth below one-bit without notable loss in inference accuracy. Unlike previous MBN quantization solutions that train a quantizer by minimizing the error to reconstruct full precision weights, ALQ directly minimizes the quantization-induced error on the loss function involving neither gradient approximation nor full precision maintenance. ALQ also exploits strategies including adaptive bitwidth, smooth bitwidth reduction, and iterative trained quantization to allow a smaller network size without loss in accuracy. Experiment results on popular image datasets show that ALQ outperforms state-of-the-art compressed networks in terms of both storage and accuracy. Code is available at https://github.com/zqu1992/ALQ
Quantizing large Neural Networks (NN) while maintaining the performance is highly desirable for resource-limited devices due to reduced memory and time complexity. It is usually formulated as a constrained optimization problem and optimized via a mod ified version of gradient descent. In this work, by interpreting the continuous parameters (unconstrained) as the dual of the quantized ones, we introduce a Mirror Descent (MD) framework for NN quantization. Specifically, we provide conditions on the projections (i.e., mapping from continuous to quantized ones) which would enable us to derive valid mirror maps and in turn the respective MD updates. Furthermore, we present a numerically stable implementation of MD that requires storing an additional set of auxiliary variables (unconstrained), and show that it is strikingly analogous to the Straight Through Estimator (STE) based method which is typically viewed as a trick to avoid vanishing gradients issue. Our experiments on CIFAR-10/100, TinyImageNet, and ImageNet classification datasets with VGG-16, ResNet-18, and MobileNetV2 architectures show that our MD variants obtain quantized networks with state-of-the-art performance. Code is available at https://github.com/kartikgupta-at-anu/md-bnn.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا