ترغب بنشر مسار تعليمي؟ اضغط هنا

Mirror Descent View for Neural Network Quantization

156   0   0.0 ( 0 )
 نشر من قبل Kartik Gupta
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Quantizing large Neural Networks (NN) while maintaining the performance is highly desirable for resource-limited devices due to reduced memory and time complexity. It is usually formulated as a constrained optimization problem and optimized via a modified version of gradient descent. In this work, by interpreting the continuous parameters (unconstrained) as the dual of the quantized ones, we introduce a Mirror Descent (MD) framework for NN quantization. Specifically, we provide conditions on the projections (i.e., mapping from continuous to quantized ones) which would enable us to derive valid mirror maps and in turn the respective MD updates. Furthermore, we present a numerically stable implementation of MD that requires storing an additional set of auxiliary variables (unconstrained), and show that it is strikingly analogous to the Straight Through Estimator (STE) based method which is typically viewed as a trick to avoid vanishing gradients issue. Our experiments on CIFAR-10/100, TinyImageNet, and ImageNet classification datasets with VGG-16, ResNet-18, and MobileNetV2 architectures show that our MD variants obtain quantized networks with state-of-the-art performance. Code is available at https://github.com/kartikgupta-at-anu/md-bnn.

قيم البحث

اقرأ أيضاً

Many neural network quantization techniques have been developed to decrease the computational and memory footprint of deep learning. However, these methods are evaluated subject to confounding tradeoffs that may affect inference acceleration or resou rce complexity in exchange for higher accuracy. In this work, we articulate a variety of tradeoffs whose impact is often overlooked and empirically analyze their impact on uniform and mixed-precision post-training quantization, finding that these confounding tradeoffs may have a larger impact on quantized network accuracy than the actual quantization methods themselves. Because these tradeoffs constrain the attainable hardware acceleration for different use-cases, we encourage researchers to explicitly report these design choices through the structure of quantization cards. We expect quantization cards to help researchers compare methods more effectively and engineers determine the applicability of quantization techniques for their hardware.
Mixed-precision quantization can potentially achieve the optimal tradeoff between performance and compression rate of deep neural networks, and thus, have been widely investigated. However, it lacks a systematic method to determine the exact quantiza tion scheme. Previous methods either examine only a small manually-designed search space or utilize a cumbersome neural architecture search to explore the vast search space. These approaches cannot lead to an optimal quantization scheme efficiently. This work proposes bit-level sparsity quantization (BSQ) to tackle the mixed-precision quantization from a new angle of inducing bit-level sparsity. We consider each bit of quantized weights as an independent trainable variable and introduce a differentiable bit-sparsity regularizer. BSQ can induce all-zero bits across a group of weight elements and realize the dynamic precision reduction, leading to a mixed-precision quantization scheme of the original model. Our method enables the exploration of the full mixed-precision space with a single gradient-based optimization process, with only one hyperparameter to tradeoff the performance and compression. BSQ achieves both higher accuracy and higher bit reduction on various model architectures on the CIFAR-10 and ImageNet datasets comparing to previous methods.
Structural pruning of neural network parameters reduces computation, energy, and memory transfer costs during inference. We propose a novel method that estimates the contribution of a neuron (filter) to the final loss and iteratively removes those wi th smaller scores. We describe two variations of our method using the first and second-order Taylor expansions to approximate a filters contribution. Both methods scale consistently across any network layer without requiring per-layer sensitivity analysis and can be applied to any kind of layer, including skip connections. For modern networks trained on ImageNet, we measured experimentally a high (>93%) correlation between the contribution computed by our methods and a reliable estimate of the true importance. Pruning with the proposed methods leads to an improvement over state-of-the-art in terms of accuracy, FLOPs, and parameter reduction. On ResNet-101, we achieve a 40% FLOPS reduction by removing 30% of the parameters, with a loss of 0.02% in the top-1 accuracy on ImageNet. Code is available at https://github.com/NVlabs/Taylor_pruning.
Network quantization, which aims to reduce the bit-lengths of the network weights and activations, has emerged for their deployments to resource-limited devices. Although recent studies have successfully discretized a full-precision network, they sti ll incur large quantization errors after training, thus giving rise to a significant performance gap between a full-precision network and its quantized counterpart. In this work, we propose a novel quantization method for neural networks, Cluster-Promoting Quantization (CPQ) that finds the optimal quantization grids while naturally encouraging the underlying full-precision weights to gather around those quantization grids cohesively during training. This property of CPQ is thanks to our two main ingredients that enable differentiable quantization: i) the use of the categorical distribution designed by a specific probabilistic parametrization in the forward pass and ii) our proposed multi-class straight-through estimator (STE) in the backward pass. Since our second component, multi-class STE, is intrinsically biased, we additionally propose a new bit-drop technique, DropBits, that revises the standard dropout regularization to randomly drop bits instead of neurons. As a natural extension of DropBits, we further introduce the way of learning heterogeneous quantization levels to find proper bit-length for each layer by imposing an additional regularization on DropBits. We experimentally validate our method on various benchmark datasets and network architectures, and also support a new hypothesis for quantization: learning heterogeneous quantization levels outperforms the case using the same but fixed quantization levels from scratch.
286 - Qinyao He , He Wen , Shuchang Zhou 2016
Reducing bit-widths of weights, activations, and gradients of a Neural Network can shrink its storage size and memory usage, and also allow for faster training and inference by exploiting bitwise operations. However, previous attempts for quantizatio n of RNNs show considerable performance degradation when using low bit-width weights and activations. In this paper, we propose methods to quantize the structure of gates and interlinks in LSTM and GRU cells. In addition, we propose balanced quantization methods for weights to further reduce performance degradation. Experiments on PTB and IMDB datasets confirm effectiveness of our methods as performances of our models match or surpass the previous state-of-the-art of quantized RNN.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا