ﻻ يوجد ملخص باللغة العربية
There is a need to accurately simulate materials with complex electromagnetic properties when modelling Ground Penetrating Radar (GPR), as many objects encountered with GPR contain water, e.g. soils, curing concrete, and water-filled pipes. One of widely-used open-source software that simulates electromagnetic wave propagation is gprMax. It uses Yees algorithm to solve Maxwells equations with the Finite-Difference Time-Domain (FDTD) method. A significant drawback of the FDTD method is the limited ability to model materials with dispersive properties, currently narrowed to specific set of relaxation mechanisms, namely multi-Debye, Drude and Lorentz media. Consequently, modelling any arbitrary complex material should be done by approximating it as a combination of these functions. This paper describes work carried out as part of the Google Summer of Code (GSoC) programme 2021 to develop a new module within gprMax that can be used to simulate complex dispersive materials using multi-Debye expansions in an automatic manner. The module is capable of modelling Havriliak-Negami, Cole-Cole, Cole-Davidson, Jonscher, Complex-Refractive Index Models, and indeed any arbitrary dispersive material with real and imaginary permittivity specified by the user.
A new shock-tracking technique that avoids re-meshing the computational grid around the moving shock-front was recently proposed by the authors [1]. This paper describes further algorithmic improvements which make the extrapolated Discontinuity Track
In this paper, we study a multi-scale deep neural network (MscaleDNN) as a meshless numerical method for computing oscillatory Stokes flows in complex domains. The MscaleDNN employs a multi-scale structure in the design of its DNN using radial scalin
Calculations of the Fourier transform of a constant quantity over an area or volume defined by polygons (connected vertices) are often useful in modeling wave scattering, or in fourier-space filtering of real-space vector-based volumes and area proje
In this work we present an adaptive boundary element method for computing the electromagnetic response of wave interactions in hyperbolic metamaterials. One unique feature of hyperbolic metamaterial is the strongly directional wave in its propagating
Image registration has played an important role in image processing problems, especially in medical imaging applications. It is well known that when the deformation is large, many variational models cannot ensure diffeomorphism. In this paper, we pro