ترغب بنشر مسار تعليمي؟ اضغط هنا

Multi-scale Deep Neural Network (MscaleDNN) Methods for Oscillatory Stokes Flows in Complex Domains

70   0   0.0 ( 0 )
 نشر من قبل Wei Cai
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we study a multi-scale deep neural network (MscaleDNN) as a meshless numerical method for computing oscillatory Stokes flows in complex domains. The MscaleDNN employs a multi-scale structure in the design of its DNN using radial scalings to convert the approximation of high frequency components of the highly oscillatory Stokes solution to one of lower frequencies. The MscaleDNN solution to the Stokes problem is obtained by minimizing a loss function in terms of L2 normof the residual of the Stokes equation. Three forms of loss functions are investigated based on vorticity-velocity-pressure, velocity-stress-pressure, and velocity-gradient of velocity-pressure formulations of the Stokes equation. We first conduct a systematic study of the MscaleDNN methods with various loss functions on the Kovasznay flow in comparison with normal fully connected DNNs. Then, Stokes flows with highly oscillatory solutions in a 2-D domain with six randomly placed holes are simulated by the MscaleDNN. The results show that MscaleDNN has faster convergence and consistent error decays in the simulation of Kovasznay flow for all four tested loss functions. More importantly, the MscaleDNN is capable of learning highly oscillatory solutions when the normal DNNs fail to converge.



قيم البحث

اقرأ أيضاً

When using Laguerre and Hermite spectral methods to numerically solve PDEs in unbounded domains, the number of collocation points assigned inside the region of interest is often insufficient, particularly when the region is expanded or translated to safely capture the unknown solution. Simply increasing the number of collocation points cannot ensure a fast convergence to spectral accuracy. In this paper, we propose a scaling technique and a moving technique to adaptively cluster enough collocation points in a region of interest in order to achieve a fast spectral convergence. Our scaling algorithm employs an indicator in the frequency domain that is used to determine when scaling is needed and informs the tuning of a scaling factor to redistribute collocation points to adapt to the diffusive behavior of the solution. Our moving technique adopts an exterior-error indicator and moves the collocation points to capture the translation. Both frequency and exterior-error indicators are defined using only the numerical solutions. We apply our methods to a number of different models, including diffusive and moving Fermi-Dirac distributions and nonlinear Dirac solitary waves, and demonstrate recovery of spectral convergence for time-dependent simulations. Performance comparison in solving a linear parabolic problem shows that our frequency scaling algorithm outperforms the existing scaling approaches. We also show our frequency scaling technique is able to track the blowup of average cell sizes in a model for cell proliferation.
We demonstrate the effective use of randomized methods for linear algebra to perform network-based analysis of complex vortical flows. Network theoretic approaches can reveal the connectivity structures among a set of vortical elements and analyze th eir collective dynamics. These approaches have recently been generalized to analyze high-dimensional turbulent flows, for which network computations can become prohibitively expensive. In this work, we propose efficient methods to approximate network quantities, such as the leading eigendecomposition of the adjacency matrix, using randomized methods. Specifically, we use the Nystrom method to approximate the leading eigenvalues and eigenvectors, achieving significant computational savings and reduced memory requirements. The effectiveness of the proposed technique is demonstrated on two high-dimensional flow fields: two-dimensional flow past an airfoil and two-dimensional turbulence. We find that quasi-uniform column sampling outperforms uniform column sampling, while both feature the same computational complexity.
We build a multi-element variant of the smoothness increasing accuracy conserving (SIAC) shock capturing technique proposed for single element spectral methods by Wissink et al. (B.W. Wissink, G.B. Jacobs, J.K. Ryan, W.S. Don, and E.T.A. van der Weid e. Shock regularization with smoothness-increasing accuracy-conserving Dirac-delta polynomial kernels. Journal of Scientific Computing, 77:579--596, 2018). In particular, the baseline scheme of our method is the nodal discontinuous Galerkin spectral element method (DGSEM) for approximating the solution of systems of conservation laws. It is well known that high-order methods generate spurious oscillations near discontinuities which can develop in the solution for nonlinear problems, even when the initial data is smooth. We propose a novel multi-element SIAC filtering technique applied to the DGSEM as a shock capturing method. We design the SIAC filtering such that the numerical scheme remains high-order accurate and that the shock capturing is applied adaptively throughout the domain. The shock capturing method is derived for general systems of conservation laws. We apply the novel SIAC filter to the two-dimensional Euler and ideal magnetohydrodynamics (MHD) equations to several standard test problems with a variety of boundary conditions.
This article is concerned with the discretisation of the Stokes equations on time-dependent domains in an Eulerian coordinate framework. Our work can be seen as an extension of a recent paper by Lehrenfeld & Olshanskii [ESAIM: M2AN, 53(2):585-614, 20 19], where BDF-type time-stepping schemes are studied for a parabolic equation on moving domains. For space discretisation, a geometrically unfitted finite element discretisation is applied in combination with Nitsches method to impose boundary conditions. Physically undefined values of the solution at previous time-steps are extended implicitly by means of so-called ghost penalty stabilisations. We derive a complete a priori error analysis of the discretisation error in space and time, including optimal $L^2(L^2)$-norm error bounds for the velocities. Finally, the theoretical results are substantiated with numerical examples.
We present a wavelet-based adaptive method for computing 3D multiscale flows in complex, time-dependent geometries, implemented on massively parallel computers. While our focus is on simulations of flapping insects, it can be used for other flow prob lems, including turbulence, as well. The incompressible fluid is modeled with an artificial compressibility approach in order to avoid solving elliptical problems. No-slip and in/outflow boundary conditions are imposed using volume penalization. The governing equations are discretized on a locally uniform Cartesian grid with centered finite differences, and integrated in time with a Runge--Kutta scheme, both of 4th order. The domain is partitioned into cubic blocks with equidistant grids with different resolution and, for each block, biorthogonal interpolating wavelets are used as refinement indicators and prediction operators. Thresholding the wavelet coefficients allows to generate dynamically evolving grids, and an adaption strategy tracks the solution in both space and scale. Blocks are distributed among MPI processes and the global topology of the grid is encoded using a tree-like data structure. Analyzing the different physical and numerical parameters allows balancing their individual error contributions and thus ensures optimal convergence while minimizing computational effort. Different validation tests score accuracy and performance of our new open source code, WABBIT (Wavelet Adaptive Block-Based solver for Interactions with Turbulence), on massively parallel computers using fully adaptive grids. Flow simulations of flapping insects demonstrate its applicability to complex, bio-inspired problems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا