ﻻ يوجد ملخص باللغة العربية
Calculations of the Fourier transform of a constant quantity over an area or volume defined by polygons (connected vertices) are often useful in modeling wave scattering, or in fourier-space filtering of real-space vector-based volumes and area projections. If the system is discretized onto a regular array, Fast Fourier techniques can speed up the resulting calculations but if high spatial resolution is required the initial step of discretization can limit performance; at other times the discretized methods result in unacceptable artifacts in the resulting transform. An alternative approach is to calculate the full Fourier integral transform of a polygonal area as a sum over the vertices, which has previously been derived in the literature using the divergence theorem to reduce the problem from a 3-dimensional to line integrals over the perimeter of the polygon surface elements, and converted to a sum over the straight segments of that contour. We demonstrate a software implementation of this algorithm and show that it can provide accurate approximations of the Fourier transform of real shapes with faster convergence than a block-based (voxel) discretization.
Image registration has played an important role in image processing problems, especially in medical imaging applications. It is well known that when the deformation is large, many variational models cannot ensure diffeomorphism. In this paper, we pro
There is a need to accurately simulate materials with complex electromagnetic properties when modelling Ground Penetrating Radar (GPR), as many objects encountered with GPR contain water, e.g. soils, curing concrete, and water-filled pipes. One of wi
We explore the connection between fractional order partial differential equations in two or more spatial dimensions with boundary integral operators to develop techniques that enable one to efficiently tackle the integral fractional Laplacian. In par
The recent application of Fourier Based Iterative Reconstruction Method (FIRM) has made it possible to achieve high-quality 2D images from a fan beam Computed Tomography (CT) scan with a limited number of projections in a fast manner. The proposed me
This paper develops and analyzes a general iterative framework for solving parameter-dependent and random diffusion problems. It is inspired by the multi-modes method of [7,8] and the ensemble method of [19] and extends those methods into a more gene