ترغب بنشر مسار تعليمي؟ اضغط هنا

Robust fine-tuning of zero-shot models

193   0   0.0 ( 0 )
 نشر من قبل Gabriel Ilharco
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Large pre-trained models such as CLIP offer consistent accuracy across a range of data distributions when performing zero-shot inference (i.e., without fine-tuning on a specific dataset). Although existing fine-tuning approaches substantially improve accuracy in-distribution, they also reduce out-of-distribution robustness. We address this tension by introducing a simple and effective method for improving robustness: ensembling the weights of the zero-shot and fine-tuned models. Compared to standard fine-tuning, the resulting weight-space ensembles provide large accuracy improvements out-of-distribution, while matching or improving in-distribution accuracy. On ImageNet and five derived distribution shifts, weight-space ensembles improve out-of-distribution accuracy by 2 to 10 percentage points while increasing in-distribution accuracy by nearly 1 percentage point relative to standard fine-tuning. These improvements come at no additional computational cost during fine-tuning or inference.

قيم البحث

اقرأ أيضاً

We present our work on Track 4 in the Dialogue System Technology Challenges 8 (DSTC8). The DSTC8-Track 4 aims to perform dialogue state tracking (DST) under the zero-shot settings, in which the model needs to generalize on unseen service APIs given a schema definition of these target APIs. Serving as the core for many virtual assistants such as Siri, Alexa, and Google Assistant, the DST keeps track of the users goal and what happened in the dialogue history, mainly including intent prediction, slot filling, and user state tracking, which tests models ability of natural language understanding. Recently, the pretrained language models have achieved state-of-the-art results and shown impressive generalization ability on various NLP tasks, which provide a promising way to perform zero-shot learning for language understanding. Based on this, we propose a schema-guided paradigm for zero-shot dialogue state tracking (SGP-DST) by fine-tuning BERT, one of the most popular pretrained language models. The SGP-DST system contains four modules for intent prediction, slot prediction, slot transfer prediction, and user state summarizing respectively. According to the official evaluation results, our SGP-DST (team12) ranked 3rd on the joint goal accuracy (primary evaluation metric for ranking submissions) and 1st on the requsted slots F1 among 25 participant teams.
Adversarial Training (AT) with Projected Gradient Descent (PGD) is an effective approach for improving the robustness of the deep neural networks. However, PGD AT has been shown to suffer from two main limitations: i) high computational cost, and ii) extreme overfitting during training that leads to reduction in model generalization. While the effect of factors such as model capacity and scale of training data on adversarial robustness have been extensively studied, little attention has been paid to the effect of a very important parameter in every network optimization on adversarial robustness: the learning rate. In particular, we hypothesize that effective learning rate scheduling during adversarial training can significantly reduce the overfitting issue, to a degree where one does not even need to adversarially train a model from scratch but can instead simply adversarially fine-tune a pre-trained model. Motivated by this hypothesis, we propose a simple yet very effective adversarial fine-tuning approach based on a $textit{slow start, fast decay}$ learning rate scheduling strategy which not only significantly decreases computational cost required, but also greatly improves the accuracy and robustness of a deep neural network. Experimental results show that the proposed adversarial fine-tuning approach outperforms the state-of-the-art methods on CIFAR-10, CIFAR-100 and ImageNet datasets in both test accuracy and the robustness, while reducing the computational cost by 8-10$times$. Furthermore, a very important benefit of the proposed adversarial fine-tuning approach is that it enables the ability to improve the robustness of any pre-trained deep neural network without needing to train the model from scratch, which to the best of the authors knowledge has not been previously demonstrated in research literature.
Contrastive self-supervised learning (CSL) leverages unlabeled data to train models that provide instance-discriminative visual representations uniformly scattered in the feature space. In deployment, the common practice is to directly fine-tune mode ls with the cross-entropy loss, which however may not be an optimal strategy. Although cross-entropy tends to separate inter-class features, the resulted models still have limited capability of reducing intra-class feature scattering that inherits from pre-training, and thus may suffer unsatisfactory performance on downstream tasks. In this paper, we investigate whether applying contrastive learning to fine-tuning would bring further benefits, and analytically find that optimizing the supervised contrastive loss benefits both class-discriminative representation learning and model optimization during fine-tuning. Inspired by these findings, we propose Contrast-regularized tuning (Core-tuning), a novel approach for fine-tuning contrastive self-supervised visual models. Instead of simply adding the contrastive loss to the objective of fine-tuning, Core-tuning also generates hard sample pairs for more effective contrastive learning through a novel feature mixup strategy, as well as improves the generalizability of the model by smoothing the decision boundary via mixed samples. Extensive experiments on image classification and semantic segmentation verify the effectiveness of Core-tuning.
Fine-tuning from pre-trained ImageNet models has become the de-facto standard for various computer vision tasks. Current practices for fine-tuning typically involve selecting an ad-hoc choice of hyperparameters and keeping them fixed to values normal ly used for training from scratch. This paper re-examines several common practices of setting hyperparameters for fine-tuning. Our findings are based on extensive empirical evaluation for fine-tuning on various transfer learning benchmarks. (1) While prior works have thoroughly investigated learning rate and batch size, momentum for fine-tuning is a relatively unexplored parameter. We find that the value of momentum also affects fine-tuning performance and connect it with previous theoretical findings. (2) Optimal hyperparameters for fine-tuning, in particular, the effective learning rate, are not only dataset dependent but also sensitive to the similarity between the source domain and target domain. This is in contrast to hyperparameters for training from scratch. (3) Reference-based regularization that keeps models close to the initial model does not necessarily apply for dissimilar datasets. Our findings challenge common practices of fine-tuning and encourages deep learning practitioners to rethink the hyperparameters for fine-tuning.
Reward learning enables the application of reinforcement learning (RL) to tasks where reward is defined by human judgment, building a model of reward by asking humans questions. Most work on reward learning has used simulated environments, but comple x information about values is often expressed in natural language, and we believe reward learning for language is a key to making RL practical and safe for real-world tasks. In this paper, we build on advances in generative pretraining of language models to apply reward learning to four natural language tasks: continuing text with positive sentiment or physically descriptive language, and summarization tasks on the TL;DR and CNN/Daily Mail datasets. For stylistic continuation we achieve good results with only 5,000 comparisons evaluated by humans. For summarization, models trained with 60,000 comparisons copy whole sentences from the input but skip irrelevant preamble; this leads to reasonable ROUGE scores and very good performance according to our human labelers, but may be exploiting the fact that labelers rely on simple heuristics.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا