ﻻ يوجد ملخص باللغة العربية
We present our work on Track 4 in the Dialogue System Technology Challenges 8 (DSTC8). The DSTC8-Track 4 aims to perform dialogue state tracking (DST) under the zero-shot settings, in which the model needs to generalize on unseen service APIs given a schema definition of these target APIs. Serving as the core for many virtual assistants such as Siri, Alexa, and Google Assistant, the DST keeps track of the users goal and what happened in the dialogue history, mainly including intent prediction, slot filling, and user state tracking, which tests models ability of natural language understanding. Recently, the pretrained language models have achieved state-of-the-art results and shown impressive generalization ability on various NLP tasks, which provide a promising way to perform zero-shot learning for language understanding. Based on this, we propose a schema-guided paradigm for zero-shot dialogue state tracking (SGP-DST) by fine-tuning BERT, one of the most popular pretrained language models. The SGP-DST system contains four modules for intent prediction, slot prediction, slot transfer prediction, and user state summarizing respectively. According to the official evaluation results, our SGP-DST (team12) ranked 3rd on the joint goal accuracy (primary evaluation metric for ranking submissions) and 1st on the requsted slots F1 among 25 participant teams.
Zero-shot transfer learning for dialogue state tracking (DST) enables us to handle a variety of task-oriented dialogue domains without the expense of collecting in-domain data. In this work, we propose to transfer the textit{cross-task} knowledge fro
Zero-shot cross-domain dialogue state tracking (DST) enables us to handle task-oriented dialogue in unseen domains without the expense of collecting in-domain data. In this paper, we propose a slot description enhanced generative approach for zero-sh
Zero-shot transfer learning for multi-domain dialogue state tracking can allow us to handle new domains without incurring the high cost of data acquisition. This paper proposes new zero-short transfer learning technique for dialogue state tracking wh
Dialogue state tracking (DST) aims at estimating the current dialogue state given all the preceding conversation. For multi-domain DST, the data sparsity problem is a major obstacle due to increased numbers of state candidates and dialogue lengths. T
Task-oriented conversational systems often use dialogue state tracking to represent the users intentions, which involves filling in values of pre-defined slots. Many approaches have been proposed, often using task-specific architectures with special-