ترغب بنشر مسار تعليمي؟ اضغط هنا

Frequency dependence in GW made simple using a multi-pole approximation

502   0   0.0 ( 0 )
 نشر من قبل Dario Alejandro Leon
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In the $GW$ approximation, the screened interaction $W$ is a non-local and dynamical potential that usually has a complex frequency dependence. A full description of such dependence is possible but often computationally demanding. For this reason, it is still common practice to approximate $W(omega)$ using a plasmon pole (PP) model. Such approach, however, may deliver an accuracy limited by its simplistic description of the frequency dependence of the polarizability, i.e. of $W$. In this work we explore a multi-pole approach (MPA) and develop an effective representation of the frequency dependence of $W$. We show that an appropriate sampling of the polarizability in the frequency complex plane and a multi-pole interpolation can lead to a level of accuracy comparable with full-frequency methods at much lower computational cost. Moreover, both accuracy and cost are controllable by the number of poles used in MPA. Eventually we validate the MPA approach in selected prototype systems, showing that full-frequency quality results can be obtained with a limited number of poles.

قيم البحث

اقرأ أيضاً

A new implementation of the GW approximation (GWA) based on the all-electron Projector-Augmented-Wave method (PAW) is presented, where the screened Coulomb interaction is computed within the Random Phase Approximation (RPA) instead of the plasmon-pol e model. Two different ways of computing the self-energy are reported. The method is used successfully to determine the quasiparticle energies of six semiconducting or insulating materials: Si, SiC, AlAs, InAs, NaH and KH. To illustrate the novelty of the method the real and imaginary part of the frequency-dependent self-energy together with the spectral function of silicon are computed. Finally, the GWA results are compared with other calculations, highlighting that all-electron GWA results can differ markedly from those based on pseudopotential approaches.
Organic electronics is a rapidly developing technology. Typically, the molecules involved in organic electronics are made up of hundreds of atoms, prohibiting a theoretical description by wavefunction-based ab-initio methods. Density-functional and G reens function type of methods scale less steeply with the number of atoms. Therefore, they provide a suitable framework for the theory of such large systems. In this contribution, we describe an implementation, for molecules, of Hedins GW approximation. The latter is the lowest order solution of a set of coupled integral equations for electronic Greens and vertex functions that was found by Lars Hedin half a century ago. Our implementation of Hedins GW approximation has two distinctive features: i) it uses sets of localized functions to describe the spatial dependence of correlation functions, and ii) it uses spectral functions to treat their frequency dependence. Using these features, we were able to achieve a favorable computational complexity of this approximation. In our implementation, the number of operations grows as N^3 with the number of atoms N.
We present quasiparticle (QP) energies from fully self-consistent $GW$ (sc$GW$) calculations for a set of prototypical semiconductors and insulators within the framework of the projector-augmented wave methodology. To obtain converged results, both f inite basis-set corrections and $k$-point corrections are included, and a simple procedure is suggested to deal with the singularity of the Coulomb kernel in the long-wavelength limit, the so called head correction. It is shown that the inclusion of the head corrections in the sc$GW$ calculations is critical to obtain accurate QP energies with a reasonable $k$-point set. We first validate our implementation by presenting detailed results for the selected case of diamond, and then we discuss the converged QP energies, in particular the band gaps, for a set of gapped compounds and compare them to single-shot $G_0W_0$, QP self-consistent $GW$, and previously available sc$GW$ results as well as experimental results.
The quasiparticle band structures of 3d transition metals, ferromagnetic Fe, Ni and paramagnetic Cu, are calculated by the GW approximation. The width of occupied 3d valence band, which is overestimated in the LSDA, is in good agreement with experime ntal observation. However the exchange splitting and satellite in spectra are not reproduced and it is required to go beyond the GW approximation. The effects of static screening and dynamical correlation are discussed in detail in comparison with the results of the static COHSEX approximation. The dynamical screening effects are important for band width narrowing.
We present theoretical calculations of quasiparticle energies in closed-shell molecules using the GW method. We compare three different approaches: a full-frequency $G_0W_0$ (FF-$G_0W_0$) method with density functional theory (DFT-PBE) used as a star ting mean field; a full-frequency $GW_0$ (FF-$GW_0$) method where the interacting Greens function is approximated by replacing the DFT energies with self-consistent quasiparticle energies or Hartree-Fock energies; and a $G_0W_0$ method with a Hybertsen-Louie generalized plasmon-pole model (HL GPP-$G_0W_0$). While the latter two methods lead to good agreement with experimental ionization potentials and electron affinities for methane, ozone, and beryllium oxide molecules, FF-$G_0W_0$ results can differ by more than one electron volt from experiment. We trace this failure of the FF-$G_0W_0$ method to the occurrence of incorrect self-energy poles describing shake-up processes in the vicinity of the quasiparticle energies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا