ترغب بنشر مسار تعليمي؟ اضغط هنا

Effects of self-consistency and plasmon-pole models on GW calculations for closed-shell molecules

73   0   0.0 ( 0 )
 نشر من قبل Johannes Lischner
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present theoretical calculations of quasiparticle energies in closed-shell molecules using the GW method. We compare three different approaches: a full-frequency $G_0W_0$ (FF-$G_0W_0$) method with density functional theory (DFT-PBE) used as a starting mean field; a full-frequency $GW_0$ (FF-$GW_0$) method where the interacting Greens function is approximated by replacing the DFT energies with self-consistent quasiparticle energies or Hartree-Fock energies; and a $G_0W_0$ method with a Hybertsen-Louie generalized plasmon-pole model (HL GPP-$G_0W_0$). While the latter two methods lead to good agreement with experimental ionization potentials and electron affinities for methane, ozone, and beryllium oxide molecules, FF-$G_0W_0$ results can differ by more than one electron volt from experiment. We trace this failure of the FF-$G_0W_0$ method to the occurrence of incorrect self-energy poles describing shake-up processes in the vicinity of the quasiparticle energies.

قيم البحث

اقرأ أيضاً

We present quasiparticle (QP) energies from fully self-consistent $GW$ (sc$GW$) calculations for a set of prototypical semiconductors and insulators within the framework of the projector-augmented wave methodology. To obtain converged results, both f inite basis-set corrections and $k$-point corrections are included, and a simple procedure is suggested to deal with the singularity of the Coulomb kernel in the long-wavelength limit, the so called head correction. It is shown that the inclusion of the head corrections in the sc$GW$ calculations is critical to obtain accurate QP energies with a reasonable $k$-point set. We first validate our implementation by presenting detailed results for the selected case of diamond, and then we discuss the converged QP energies, in particular the band gaps, for a set of gapped compounds and compare them to single-shot $G_0W_0$, QP self-consistent $GW$, and previously available sc$GW$ results as well as experimental results.
The search for new materials, based on computational screening, relies on methods that accurately predict, in an automatic manner, total energy, atomic-scale geometries, and other fundamental characteristics of materials. Many technologically importa nt material properties directly stem from the electronic structure of a material, but the usual workhorse for total energies, namely density-functional theory, is plagued by fundamental shortcomings and errors from approximate exchange-correlation functionals in its prediction of the electronic structure. At variance, the $GW$ method is currently the state-of-the-art {em ab initio} approach for accurate electronic structure. It is mostly used to perturbatively correct density-functional theory results, but is however computationally demanding and also requires expert knowledge to give accurate results. Accordingly, it is not presently used in high-throughput screening: fully automatized algorithms for setting up the calculations and determining convergence are lacking. In this work we develop such a method and, as a first application, use it to validate the accuracy of $G_0W_0$ using the PBE starting point, and the Godby-Needs plasmon pole model ($G_0W_0^textrm{GN}$@PBE), on a set of about 80 solids. The results of the automatic convergence study utilized provides valuable insights. Indeed, we find correlations between computational parameters that can be used to further improve the automatization of $GW$ calculations. Moreover, we find that $G_0W_0^textrm{GN}$@PBE shows a correlation between the PBE and the $G_0W_0^textrm{GN}$@PBE gaps that is much stronger than that between $GW$ and experimental gaps. However, the $G_0W_0^textrm{GN}$@PBE gaps still describe the experimental gaps more accurately than a linear model based on the PBE gaps.
A new implementation of the GW approximation (GWA) based on the all-electron Projector-Augmented-Wave method (PAW) is presented, where the screened Coulomb interaction is computed within the Random Phase Approximation (RPA) instead of the plasmon-pol e model. Two different ways of computing the self-energy are reported. The method is used successfully to determine the quasiparticle energies of six semiconducting or insulating materials: Si, SiC, AlAs, InAs, NaH and KH. To illustrate the novelty of the method the real and imaginary part of the frequency-dependent self-energy together with the spectral function of silicon are computed. Finally, the GWA results are compared with other calculations, highlighting that all-electron GWA results can differ markedly from those based on pseudopotential approaches.
We develop the plasmon-pole approximation (PPA) theory for calculating the carrier self-energy of extrinsic graphene as a function of doping density within analytical approximations to the $GW$ random phase approximation ($GW$-RPA). Our calculated se lf-energy shows excellent quantitative agreement with the corresponding full $GW$-RPA calculation results in spite of the simplicity of the PPA, establishing the general validity of the plasmon-pole approximation scheme. We also provide a comparison between the PPA and the hydrodynamic approximation in graphene, and comment on the experimental implications of our findings.
Within the framework of the full potential projector-augmented wave methodology, we present a promising low-scaling $GW$ implementation. It allows for quasiparticle calculations with a scaling that is cubic in the system size and linear in the number of $k$ points used to sample the Brillouin zone. This is achieved by calculating the polarizability and self-energy in the real space and imaginary time domain. The transformation from the imaginary time to the frequency domain is done by an efficient discrete Fourier transformation with only a few nonuniform grid points. Fast Fourier transformations are used to go from real space to reciprocal space and vice versa. The analytic continuation from the imaginary to the real frequency axis is performed by exploiting Thieles reciprocal difference approach. Finally, the method is applied successfully to predict the quasiparticle energies and spectral functions of typical semiconductors (Si, GaAs, SiC, and ZnO), insulators (C, BN, MgO, and LiF), and metals (Cu and SrVO$_3$). The results are compared with conventional $GW$ calculations. Good agreement is achieved, highlighting the strength of the present method.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا