ترغب بنشر مسار تعليمي؟ اضغط هنا

A shallow dark matter halo in Ultra Diffuse Galaxy AGC 242019: are UDGs structurally similar to low surface brightness galaxies?

61   0   0.0 ( 0 )
 نشر من قبل Chris Brook Dr
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A central question regarding Ultra Diffuse Galaxies (UDGs) is whether they are a separate category to Low Surface Brightness (LSB) galaxies, or just their natural continuation towards low stellar masses. In this letter, we show that the rotation curve of the gas rich UDG AGC 242019 is well fit by a dark matter halo with inner slope that asymptotes to -0.54, and that such fit provides a concentration parameter that matches theoretical expectations. This finding, together with previously works in which shallow inner profiles are derived for UDGs, shows that the structural properties of these galaxies are like other observed LSBs. UDGs show slowly rising rotation curves and this favours formation scenarios in which internal processes, such as SNae driven gas outflows, are acting to modify UDGs profiles.



قيم البحث

اقرأ أيضاً

Recent advancements in the imaging of low-surface-brightness objects revealed numerous ultra-diffuse galaxies in the local Universe. These peculiar objects are unusually extended and faint: their effective radii are comparable to the Milky Way, but t heir surface brightnesses are lower than that of dwarf galaxies. Their ambiguous properties motivate two potential formation scenarios: the failed Milky Way and the dwarf galaxy scenario. In this paper, for the first time, we employ X-ray observations to test these formation scenarios on a sample of isolated, low-surface-brightness galaxies. Since hot gas X-ray luminosities correlate with the dark matter halo mass, failed Milky Way-type galaxies, which reside in massive dark matter halos, are expected to have significantly higher X-ray luminosities than dwarf galaxies, which reside in low-mass dark matter halos. We perform X-ray photometry on a subset of low-surface-brightness galaxies identified in the Hyper Suprime-Cam Subaru survey, utilizing the XMM-Newton XXL North survey. We find that none of the individual galaxies show significant X-ray emission. By co-adding the signal of individual galaxies, the stacked galaxies remain undetected and we set an X-ray luminosity upper limit of ${L_{rm{0.3-1.2keV}}leq6.2 times 10^{37} (d/65 rm{Mpc})^2 rm{erg s^{-1}}}$ for an average isolated low-surface-brightness galaxy. This upper limit is about 40 times lower than that expected in a galaxy with a massive dark matter halo, implying that the majority of isolated low-surface-brightness galaxies reside in dwarf-size dark matter halos.
Dark matter as a Bose-Einstein condensate, such as the axionic scalar field particles of String Theory, can explain the coldness of dark matter on large scales. Pioneering simulations in this context predict a rich wave-like structure, with a ground state soliton core in every galaxy surrounded by a halo of excited states that interfere on the de Broglie scale. This de Broglie scale is largest for low mass galaxies as momentum is lower, providing a simple explanation for the wide cores of dwarf spheroidal galaxies. Here we extend these wave dark matter ($psi$DM) predictions to the newly discovered class of Ultra Diffuse Galaxies (UDG) that resemble dwarf spheroidal galaxies but with more extended stellar profiles. Currently the best studied example, DF44, has a uniform velocity dispersion of $simeq 33$km/s, extending to at least 3 kpc, that we show is reproduced by our $psi$DM simulations with a soliton radius of $simeq 0.5$ kpc. In the $psi$DM context, we show the relatively flat dispersion profile of DF44 lies between massive galaxies with compact dense solitons, as may be present in the Milky Way on a scale of 100pc and lower mass galaxies where the velocity dispersion declines centrally within a wide, low density soliton, like Antlia II, of radius 3 kpc.
177 - Stacy McGaugh 2021
Galaxies are the basic structural element of the universe; galaxy formation theory seeks to explain how these structures came to be. I trace some of the foundational ideas in galaxy formation, with emphasis on the need for non-baryonic cold dark matt er. Many elements of early theory did not survive contact with observations of low surface brightness galaxies, leading to the need for auxiliary hypotheses like feedback. The failure points often trace to the surprising predictive successes of an alternative to dark matter, the Modified Newtonian Dynamics (MOND). While dark matter models are flexible in accommodating observations, they do not provide the predictive capacity of MOND. If the universe is made of cold dark matter, why does MOND get any predictions right?
Our GMRT HI observations of the ultra diffuse galaxy (UDG) UGC 2162, projected $sim$ 300 kpc from the centre of the M77 group, reveal it to a have an extended HI disk (R$_{HI}$/R$_{25}$ $sim$ 3.3) with a moderate rotational velocity (V$_{rot} sim$ 31 km/s). This V$_{rot}$ is in line with that of dwarf galaxies with similar HI mass. We estimate an M$_{dyn}$ of $sim$ 1.14 $times$ 10$^{9}$ M$_odot$ within the galaxys R$_{HI}$ $sim$ 5.2 kpc. Additionally, our estimates of M$_{200}$ for the galaxy from NFW models are in the range of 5.0 to 8.8 $times$ 10$^{10}$ M$_odot$. Comparing UGC 2162 to samples of UDGs with HI detections show it to have amongst the smallest R$_e$ with its M$_{HI}$/M$_{star}$ being distinctly higher and g -- i colour slightly bluer than typical values in those samples. We also compared HI and dark matter (DM) halo properties of UGC 2162 with dwarf galaxies in the LITTLE THINGS sample and find its DM halo mass and profile are within the range expected for a dwarf galaxy. While we were unable to to determine the origin of the galaxys present day optical form from our study, its normal HI rotation velocity in relation to its HI mass, HI morphology, environment and dwarf mass DM halo ruled out some of the proposed ultra diffuse galaxy formation scenarios for this galaxy.
Andromeda XXI (And XXI) has been proposed as a dwarf spheroidal galaxy with a central dark matter density that is lower than expected in the Standard $Lambda$ Cold Dark Matter ($Lambda$CDM) cosmology. In this work, we present dynamical observations f or 77 member stars in this system, more than doubling previous studies to determine whether this galaxy is truly a low density outlier. We measure a systemic velocity of $v_r=-363.4pm1.0,{rm kms}^{-1}$ and a velocity dispersion of $sigma_v=6.1^{+1.0}_{-0.9},{rm kms}^{-1}$, consistent with previous work and within $1sigma$ of predictions made within the modified Newtonian dynamics framework. We also measure the metallicity of our member stars from their spectra, finding a mean value of ${rm [Fe/H]}=-1.7pm0.1$~dex. We model the dark matter density profile of And~XXI using an improved version of GravSphere, finding a central density of $rho_{rm DM}({rm 150 pc})=2.7_{-1.7}^{+2.7} times 10^7 ,{rm M_odot,kpc^{-3}}$ at 68% confidence, and a density at two half light radii of $rho_{rm DM}({rm 1.75 kpc})=0.9_{-0.2}^{+0.3} times 10^5 ,{rm M_odot,kpc^{-3}}$ at 68% confidence. These are both a factor ${sim}3-5$ lower than the densities expected from abundance matching in $Lambda$CDM. We show that this cannot be explained by `dark matter heating since And~XXI had too little star formation to significantly lower its inner dark matter density, while dark matter heating only acts on the profile inside the half light radius. However, And~XXIs low density can be accommodated within $Lambda$CDM if it experienced extreme tidal stripping (losing $>95%$ of its mass), or if it inhabits a low concentration halo on a plunging orbit that experienced repeated tidal shocks.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا