ترغب بنشر مسار تعليمي؟ اضغط هنا

Constraining the dark matter halo mass of isolated low-surface-brightness galaxies

127   0   0.0 ( 0 )
 نشر من قبل Orsolya Kovacs
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Recent advancements in the imaging of low-surface-brightness objects revealed numerous ultra-diffuse galaxies in the local Universe. These peculiar objects are unusually extended and faint: their effective radii are comparable to the Milky Way, but their surface brightnesses are lower than that of dwarf galaxies. Their ambiguous properties motivate two potential formation scenarios: the failed Milky Way and the dwarf galaxy scenario. In this paper, for the first time, we employ X-ray observations to test these formation scenarios on a sample of isolated, low-surface-brightness galaxies. Since hot gas X-ray luminosities correlate with the dark matter halo mass, failed Milky Way-type galaxies, which reside in massive dark matter halos, are expected to have significantly higher X-ray luminosities than dwarf galaxies, which reside in low-mass dark matter halos. We perform X-ray photometry on a subset of low-surface-brightness galaxies identified in the Hyper Suprime-Cam Subaru survey, utilizing the XMM-Newton XXL North survey. We find that none of the individual galaxies show significant X-ray emission. By co-adding the signal of individual galaxies, the stacked galaxies remain undetected and we set an X-ray luminosity upper limit of ${L_{rm{0.3-1.2keV}}leq6.2 times 10^{37} (d/65 rm{Mpc})^2 rm{erg s^{-1}}}$ for an average isolated low-surface-brightness galaxy. This upper limit is about 40 times lower than that expected in a galaxy with a massive dark matter halo, implying that the majority of isolated low-surface-brightness galaxies reside in dwarf-size dark matter halos.



قيم البحث

اقرأ أيضاً

Searches for dark matter annihilation signals have been carried out in a number of target regions such as the Galactic Center and Milky Way dwarf spheroidal galaxies (dSphs), among a few others. Here we propose low surface brightness galaxies (LSBGs) asnovel targets for the indirect detection of dark matter emission. In particular, LSBGs are known to have very large dark matter contents and be less contaminated by extragalactic gamma-ray sources (e.g., blazars) compared to star forming galaxies. We report on an analysis that uses eight LSBGs (detected by Subaru Hyper Suprime-Cam survey data) with known redshifts to conduct a search for gamma-ray emission at the positions of these new objects in Fermi Large Area Telescope data. We found no excesses of gamma-ray emission and set constraints on the dark matter annihilation cross-section. We exclude (at the 95% C.L.) dark matter scenarios predicting a cross-section higher than 10^-23[cm^3/s] for dark matter particles of mass 10 GeV self-annihilating in the b_b channel. Although this constraint is weaker than the ones reported in recent studies using other targets, we note that in the near future, the number of detections of new LSBGs will increase by a few orders of magnitude. We forecast that with the use of the full catalog of soon-to-be-detected LSBGs the constraint will reach cross-section sensitivities of ~ 3*10^-25 [cm^3/s] for dark matter particles with masses less than 10 GeV.
The observed rotation curves of low surface brightness (LSB) galaxies play an essential role in studying dark matter, and indicate that there exists a central constant density dark matter core. However, the cosmological N-body simulations of cold dar k matter predict an inner cusped halo with a power-law mass density distribution, and cant reproduce a central constant-density core. This phenomenon is called cusp-core problem. When dark matter is quiescent and satisfies the condition for hydrostatic equilibrium, using the equation of state can get the density profile in the static and spherically symmetric space-time. To solve the cusp-core problem, we assume that the equation of state is independent of the scaling transformation. Its lower order approximation for this type of equation of state can naturally lead to a special case, i.e. $p=zetarho+2epsilon V_{rot}^{2}rho$, where $p$ and $rho$ are the pressure and density, $V_{rot}$ is the rotation velocity of galaxy, $zeta$ and $ epsilon$ are positive constants. It can obtain a density profile that is similar to the pseudo-isothermal halo model when $epsilon$ is around $0.15$. To get a more widely used model, let the equation of state include the polytropic model, i.e. $p= frac{zeta}{rho_{0}^{s}}rho^{1+s}+ 2epsilon V_{rot}^{2}rho$, we can get other kinds of density profiles, such as the profile that is nearly same with the Burkert profile, where $s$ and $rho_{0}$ are positive constants.
177 - Stacy McGaugh 2021
Galaxies are the basic structural element of the universe; galaxy formation theory seeks to explain how these structures came to be. I trace some of the foundational ideas in galaxy formation, with emphasis on the need for non-baryonic cold dark matt er. Many elements of early theory did not survive contact with observations of low surface brightness galaxies, leading to the need for auxiliary hypotheses like feedback. The failure points often trace to the surprising predictive successes of an alternative to dark matter, the Modified Newtonian Dynamics (MOND). While dark matter models are flexible in accommodating observations, they do not provide the predictive capacity of MOND. If the universe is made of cold dark matter, why does MOND get any predictions right?
A central question regarding Ultra Diffuse Galaxies (UDGs) is whether they are a separate category to Low Surface Brightness (LSB) galaxies, or just their natural continuation towards low stellar masses. In this letter, we show that the rotation curv e of the gas rich UDG AGC 242019 is well fit by a dark matter halo with inner slope that asymptotes to -0.54, and that such fit provides a concentration parameter that matches theoretical expectations. This finding, together with previously works in which shallow inner profiles are derived for UDGs, shows that the structural properties of these galaxies are like other observed LSBs. UDGs show slowly rising rotation curves and this favours formation scenarios in which internal processes, such as SNae driven gas outflows, are acting to modify UDGs profiles.
We present a catalog of 23,790 extended low-surface-brightness galaxies (LSBGs) identified in $sim 5000 deg^2$ from the first three years of imaging data from the Dark Energy Survey (DES). Based on a single-component Sersic model fit, we define exten ded LSBGs as galaxies with $g$-band effective radii $R_{eff}(g) > 2.5$ and mean surface brightness $bar{mu}_{eff}(g) > 24.2 ,mag .arcsec^{-2}$. We find that the distribution of LSBGs is strongly bimodal in $(g-r)$ vs. $(g-i$) color space. We divide our sample into red ($g-i geq 0.60$) and blue ($g-i<0.60$) galaxies and study the properties of the two populations. Redder LSBGs are more clustered than their blue counterparts and are correlated with the distribution of nearby ($z < 0.10$) bright galaxies. Red LSBGs constitute $sim 33%$ of our LSBG sample, and $sim 30%$ of these are located within 1 deg of low-redshift galaxy groups and clusters (compared to $sim 8%$ of the blue LSBGs). For nine of the most prominent galaxy groups and clusters, we calculate the physical properties of associated LSBGs assuming a redshift derived from the host system. In these systems, we identify 41 objects that can be classified as ultra-diffuse galaxies, defined as LSBGs with projected physical effective radii $R_{eff} > 1.5 ,kpc$ and central surface brighthness $mu_0(g) > 24.0, mag ,arcsec^{-2}$. The wide-area sample of LSBGs in DES can be used to test the role of environment on models of LSBG formation and evolution.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا