ﻻ يوجد ملخص باللغة العربية
Our GMRT HI observations of the ultra diffuse galaxy (UDG) UGC 2162, projected $sim$ 300 kpc from the centre of the M77 group, reveal it to a have an extended HI disk (R$_{HI}$/R$_{25}$ $sim$ 3.3) with a moderate rotational velocity (V$_{rot} sim$ 31 km/s). This V$_{rot}$ is in line with that of dwarf galaxies with similar HI mass. We estimate an M$_{dyn}$ of $sim$ 1.14 $times$ 10$^{9}$ M$_odot$ within the galaxys R$_{HI}$ $sim$ 5.2 kpc. Additionally, our estimates of M$_{200}$ for the galaxy from NFW models are in the range of 5.0 to 8.8 $times$ 10$^{10}$ M$_odot$. Comparing UGC 2162 to samples of UDGs with HI detections show it to have amongst the smallest R$_e$ with its M$_{HI}$/M$_{star}$ being distinctly higher and g -- i colour slightly bluer than typical values in those samples. We also compared HI and dark matter (DM) halo properties of UGC 2162 with dwarf galaxies in the LITTLE THINGS sample and find its DM halo mass and profile are within the range expected for a dwarf galaxy. While we were unable to to determine the origin of the galaxys present day optical form from our study, its normal HI rotation velocity in relation to its HI mass, HI morphology, environment and dwarf mass DM halo ruled out some of the proposed ultra diffuse galaxy formation scenarios for this galaxy.
The cosmological numerical simulations tell us that accretion of external metal-poor gas drives star-formation (SF) in galaxy disks. One the best pieces of observational evidence supporting this prediction is the existence of low metallicity star-for
Dark matter as a Bose-Einstein condensate, such as the axionic scalar field particles of String Theory, can explain the coldness of dark matter on large scales. Pioneering simulations in this context predict a rich wave-like structure, with a ground
A central question regarding Ultra Diffuse Galaxies (UDGs) is whether they are a separate category to Low Surface Brightness (LSB) galaxies, or just their natural continuation towards low stellar masses. In this letter, we show that the rotation curv
We study ultra-diffuse galaxies (UDGs) in zoom in cosmological simulations, seeking the origin of UDGs in the field versus galaxy groups. We find that while field UDGs arise from dwarfs in a characteristic mass range by multiple episodes of supernova
Due to the peculiar properties of ultra-diffuse galaxies (UDGs), understanding their origin presents a major challenge. Previous X-ray studies demonstrated that the bulk of UDGs lack substantial X-ray emission, implying that they reside in low-mass d