ترغب بنشر مسار تعليمي؟ اضغط هنا

An Empirical Study of Graph Contrastive Learning

123   0   0.0 ( 0 )
 نشر من قبل Yanqiao Zhu
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Graph Contrastive Learning (GCL) establishes a new paradigm for learning graph representations without human annotations. Although remarkable progress has been witnessed recently, the success behind GCL is still left somewhat mysterious. In this work, we first identify several critical design considerations within a general GCL paradigm, including augmentation functions, contrasting modes, contrastive objectives, and negative mining techniques. Then, to understand the interplay of different GCL components, we conduct extensive, controlled experiments over a set of benchmark tasks on datasets across various domains. Our empirical studies suggest a set of general receipts for effective GCL, e.g., simple topology augmentations that produce sparse graph views bring promising performance improvements; contrasting modes should be aligned with the granularities of end tasks. In addition, to foster future research and ease the implementation of GCL algorithms, we develop an easy-to-use library PyGCL, featuring modularized CL components, standardized evaluation, and experiment management. We envision this work to provide useful empirical evidence of effective GCL algorithms and offer several insights for future research.



قيم البحث

اقرأ أيضاً

Recently, heterogeneous Graph Neural Networks (GNNs) have become a de facto model for analyzing HGs, while most of them rely on a relative large number of labeled data. In this work, we investigate Contrastive Learning (CL), a key component in self-s upervised approaches, on HGs to alleviate the label scarcity problem. We first generate multiple semantic views according to metapaths and network schemas. Then, by pushing node embeddings corresponding to different semantic views close to each other (positives) and pulling other embeddings apart (negatives), one can obtain informative representations without human annotations. However, this CL approach ignores the relative hardness of negative samples, which may lead to suboptimal performance. Considering the complex graph structure and the smoothing nature of GNNs, we propose a structure-aware hard negative mining scheme that measures hardness by structural characteristics for HGs. By synthesizing more negative nodes, we give larger weights to harder negatives with limited computational overhead to further boost the performance. Empirical studies on three real-world datasets show the effectiveness of our proposed method. The proposed method consistently outperforms existing state-of-the-art methods and notably, even surpasses several supervised counterparts.
Graph representation learning plays a vital role in processing graph-structured data. However, prior arts on graph representation learning heavily rely on labeling information. To overcome this problem, inspired by the recent success of graph contras tive learning and Siamese networks in visual representation learning, we propose a novel self-supervised approach in this paper to learn node representations by enhancing Siamese self-distillation with multi-scale contrastive learning. Specifically, we first generate two augmented views from the input graph based on local and global perspectives. Then, we employ two objectives called cross-view and cross-network contrastiveness to maximize the agreement between node representations across different views and networks. To demonstrate the effectiveness of our approach, we perform empirical experiments on five real-world datasets. Our method not only achieves new state-of-the-art results but also surpasses some semi-supervised counterparts by large margins. Code is made available at https://github.com/GRAND-Lab/MERIT
91 - Shuai Lin , Pan Zhou , Zi-Yuan Hu 2021
Graph-level representations are critical in various real-world applications, such as predicting the properties of molecules. But in practice, precise graph annotations are generally very expensive and time-consuming. To address this issue, graph cont rastive learning constructs instance discrimination task which pulls together positive pairs (augmentation pairs of the same graph) and pushes away negative pairs (augmentation pairs of different graphs) for unsupervised representation learning. However, since for a query, its negatives are uniformly sampled from all graphs, existing methods suffer from the critical sampling bias issue, i.e., the negatives likely having the same semantic structure with the query, leading to performance degradation. To mitigate this sampling bias issue, in this paper, we propose a Prototypical Graph Contrastive Learning (PGCL) approach. Specifically, PGCL models the underlying semantic structure of the graph data via clustering semantically similar graphs into the same group, and simultaneously encourages the clustering consistency for different augmentations of the same graph. Then given a query, it performs negative sampling via drawing the graphs from those clusters that differ from the cluster of query, which ensures the semantic difference between query and its negative samples. Moreover, for a query, PGCL further reweights its negative samples based on the distance between their prototypes (cluster centroids) and the query prototype such that those negatives having moderate prototype distance enjoy relatively large weights. This reweighting strategy is proved to be more effective than uniform sampling. Experimental results on various graph benchmarks testify the advantages of our PGCL over state-of-the-art methods.
Graph representation learning has emerged as a powerful technique for addressing real-world problems. Various downstream graph learning tasks have benefited from its recent developments, such as node classification, similarity search, and graph class ification. However, prior arts on graph representation learning focus on domain specific problems and train a dedicated model for each graph dataset, which is usually non-transferable to out-of-domain data. Inspired by the recent advances in pre-training from natural language processing and computer vision, we design Graph Contrastive Coding (GCC) -- a self-supervised graph neural network pre-training framework -- to capture the universal network topological properties across multiple networks. We design GCCs pre-training task as subgraph instance discrimination in and across networks and leverage contrastive learning to empower graph neural networks to learn the intrinsic and transferable structural representations. We conduct extensive experiments on three graph learning tasks and ten graph datasets. The results show that GCC pre-trained on a collection of diverse datasets can achieve competitive or better performance to its task-specific and trained-from-scratch counterparts. This suggests that the pre-training and fine-tuning paradigm presents great potential for graph representation learning.
142 - Deli Chen , Yanyai Lin , Lei Li 2020
Contrastive learning (CL) has proven highly effective in graph-based semi-supervised learning (SSL), since it can efficiently supplement the limited task information from the annotated nodes in graph. However, existing graph CL (GCL) studies ignore t he uneven distribution of task information across graph caused by the graph topology and the selection of annotated nodes. They apply CL to the whole graph evenly, which results in an incongruous combination of CL and graph learning. To address this issue, we propose to apply CL in the graph learning adaptively by taking the received task information of each node into consideration. Firstly, we introduce Group PageRank to measure the node information gain from graph and find that CL mainly works for nodes that are topologically far away from the labeled nodes. We then propose our Distance-wise Graph Contrastive Learning (DwGCL) method from two views:(1) From the global view of the task information distribution across the graph, we enhance the CL effect on nodes that are topologically far away from labeled nodes; (2) From the personal view of each nodes received information, we measure the relative distance between nodes and then we adapt the sampling strategy of GCL accordingly. Extensive experiments on five benchmark graph datasets show that DwGCL can bring a clear improvement over previous GCL methods. Our analysis on eight graph neural network with various types of architecture and three different annotation settings further demonstrates the generalizability of DwGCL.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا