ترغب بنشر مسار تعليمي؟ اضغط هنا

Multi-Scale Contrastive Siamese Networks for Self-Supervised Graph Representation Learning

120   0   0.0 ( 0 )
 نشر من قبل Ming Jin
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Graph representation learning plays a vital role in processing graph-structured data. However, prior arts on graph representation learning heavily rely on labeling information. To overcome this problem, inspired by the recent success of graph contrastive learning and Siamese networks in visual representation learning, we propose a novel self-supervised approach in this paper to learn node representations by enhancing Siamese self-distillation with multi-scale contrastive learning. Specifically, we first generate two augmented views from the input graph based on local and global perspectives. Then, we employ two objectives called cross-view and cross-network contrastiveness to maximize the agreement between node representations across different views and networks. To demonstrate the effectiveness of our approach, we perform empirical experiments on five real-world datasets. Our method not only achieves new state-of-the-art results but also surpasses some semi-supervised counterparts by large margins. Code is made available at https://github.com/GRAND-Lab/MERIT

قيم البحث

اقرأ أيضاً

76 - Xiang Gao , Wei Hu , Guo-Jun Qi 2021
We present the Topology Transformation Equivariant Representation learning, a general paradigm of self-supervised learning for node representations of graph data to enable the wide applicability of Graph Convolutional Neural Networks (GCNNs). We form alize the proposed model from an information-theoretic perspective, by maximizing the mutual information between topology transformations and node representations before and after the transformations. We derive that maximizing such mutual information can be relaxed to minimizing the cross entropy between the applied topology transformation and its estimation from node representations. In particular, we seek to sample a subset of node pairs from the original graph and flip the edge connectivity between each pair to transform the graph topology. Then, we self-train a representation encoder to learn node representations by reconstructing the topology transformations from the feature representations of the original and transformed graphs. In experiments, we apply the proposed model to the downstream node and graph classification tasks, and results show that the proposed method outperforms the state-of-the-art unsupervised approaches.
114 - Jiaqi Zeng , Pengtao Xie 2020
Graph classification is a widely studied problem and has broad applications. In many real-world problems, the number of labeled graphs available for training classification models is limited, which renders these models prone to overfitting. To addres s this problem, we propose two approaches based on contrastive self-supervised learning (CSSL) to alleviate overfitting. In the first approach, we use CSSL to pretrain graph encoders on widely-available unlabeled graphs without relying on human-provided labels, then finetune the pretrained encoders on labeled graphs. In the second approach, we develop a regularizer based on CSSL, and solve the supervised classification task and the unsupervised CSSL task simultaneously. To perform CSSL on graphs, given a collection of original graphs, we perform data augmentation to create augmented graphs out of the original graphs. An augmented graph is created by consecutively applying a sequence of graph alteration operations. A contrastive loss is defined to learn graph encoders by judging whether two augmented graphs are from the same original graph. Experiments on various graph classification datasets demonstrate the effectiveness of our proposed methods.
105 - Kai Chen , Lanqing Hong , Hang Xu 2021
Autonomous driving has attracted much attention over the years but turns out to be harder than expected, probably due to the difficulty of labeled data collection for model training. Self-supervised learning (SSL), which leverages unlabeled data only for representation learning, might be a promising way to improve model performance. Existing SSL methods, however, usually rely on the single-centric-object guarantee, which may not be applicable for multi-instance datasets such as street scenes. To alleviate this limitation, we raise two issues to solve: (1) how to define positive samples for cross-view consistency and (2) how to measure similarity in multi-instance circumstances. We first adopt an IoU threshold during random cropping to transfer global-inconsistency to local-consistency. Then, we propose two feature alignment methods to enable 2D feature maps for multi-instance similarity measurement. Additionally, we adopt intra-image clustering with self-attention for further mining intra-image similarity and translation-invariance. Experiments show that, when pre-trained on Waymo dataset, our method called Multi-instance Siamese Network (MultiSiam) remarkably improves generalization ability and achieves state-of-the-art transfer performance on autonomous driving benchmarks, including Cityscapes and BDD100K, while existing SSL counterparts like MoCo, MoCo-v2, and BYOL show significant performance drop. By pre-training on SODA10M, a large-scale autonomous driving dataset, MultiSiam exceeds the ImageNet pre-trained MoCo-v2, demonstrating the potential of domain-specific pre-training. Code will be available at https://github.com/KaiChen1998/MultiSiam.
Graph neural networks~(GNNs) apply deep learning techniques to graph-structured data and have achieved promising performance in graph representation learning. However, existing GNNs rely heavily on enough labels or well-designed negative samples. To address these issues, we propose a new self-supervised graph representation method: deep graph bootstrapping~(DGB). DGB consists of two neural networks: online and target networks, and the input of them are different augmented views of the initial graph. The online network is trained to predict the target network while the target network is updated with a slow-moving average of the online network, which means the online and target networks can learn from each other. As a result, the proposed DGB can learn graph representation without negative examples in an unsupervised manner. In addition, we summarize three kinds of augmentation methods for graph-structured data and apply them to the DGB. Experiments on the benchmark datasets show the DGB performs better than the current state-of-the-art methods and how the augmentation methods affect the performances.
256 - Yu Zheng , Ming Jin , Yixin Liu 2021
Anomaly detection from graph data has drawn much attention due to its practical significance in many critical applications including cybersecurity, finance, and social networks. Existing data mining and machine learning methods are either shallow met hods that could not effectively capture the complex interdependency of graph data or graph autoencoder methods that could not fully exploit the contextual information as supervision signals for effective anomaly detection. To overcome these challenges, in this paper, we propose a novel method, Self-Supervised Learning for Graph Anomaly Detection (SL-GAD). Our method constructs different contextual subgraphs (views) based on a target node and employs two modules, generative attribute regression and multi-view contrastive learning for anomaly detection. While the generative attribute regression module allows us to capture the anomalies in the attribute space, the multi-view contrastive learning module can exploit richer structure information from multiple subgraphs, thus abling to capture the anomalies in the structure space, mixing of structure, and attribute information. We conduct extensive experiments on six benchmark datasets and the results demonstrate that our method outperforms state-of-the-art methods by a large margin.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا