ﻻ يوجد ملخص باللغة العربية
Several academics have studied the ability of hybrid models mixing univariate Generalized Autoregressive Conditional Heteroskedasticity (GARCH) models and neural networks to deliver better volatility predictions than purely econometric models. Despite presenting very promising results, the generalization of such models to the multivariate case has yet to be studied. Moreover, very few papers have examined the ability of neural networks to predict the covariance matrix of asset returns, and all use a rather small number of assets, thus not addressing what is known as the curse of dimensionality. The goal of this paper is to investigate the ability of hybrid models, mixing GARCH processes and neural networks, to forecast covariance matrices of asset returns. To do so, we propose a new model, based on multivariate GARCHs that decompose volatility and correlation predictions. The volatilities are here forecast using hybrid neural networks while correlations follow a traditional econometric process. After implementing the models in a minimum variance portfolio framework, our results are as follows. First, the addition of GARCH parameters as inputs is beneficial to the model proposed. Second, the use of one-hot-encoding to help the neural network differentiate between each stock improves the performance. Third, the new model proposed is very promising as it not only outperforms the equally weighted portfolio, but also by a significant margin its econometric counterpart that uses univariate GARCHs to predict the volatilities.
This paper presents performance analysis of hybrid model comprise of concordance and Genetic Programming (GP) to forecast financial market with some existing models. This scheme can be used for in depth analysis of stock market. Different measures of
The market events of 2007-2009 have reinvigorated the search for realistic return models that capture greater likelihoods of extreme movements. In this paper we model the medium-term log-return dynamics in a market with both fundamental and technical
We define a random-matrix ensemble given by the infinite-time covariance matrices of Ornstein-Uhlenbeck processes at different temperatures coupled by a Gaussian symmetric matrix. The spectral properties of this ensemble are shown to be in qualitativ
For a GJR-GARCH specification with a generic innovation distribution we derive analytic expressions for the first four conditional moments of the forward and aggregated returns and variances. Moment for the most commonly used GARCH models are stated
In recent years, hyperparameter optimization (HPO) has become an increasingly important issue in the field of machine learning for the development of more accurate forecasting models. In this study, we explore the potential of HPO in modeling stock r