ترغب بنشر مسار تعليمي؟ اضغط هنا

Performance Analysis of Hybrid Forecasting Model In Stock Market Forecasting

160   0   0.0 ( 0 )
 نشر من قبل Mahesh Khadka
 تاريخ النشر 2012
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper presents performance analysis of hybrid model comprise of concordance and Genetic Programming (GP) to forecast financial market with some existing models. This scheme can be used for in depth analysis of stock market. Different measures of concordances such as Kendalls Tau, Ginis Mean Difference, Spearmans Rho, and weak interpretation of concordance are used to search for the pattern in past that look similar to present. Genetic Programming is then used to match the past trend to present trend as close as possible. Then Genetic Program estimates what will happen next based on what had happened next. The concept is validated using financial time series data (S&P 500 and NASDAQ indices) as sample data sets. The forecasted result is then compared with standard ARIMA model and other model to analyse its performance.



قيم البحث

اقرأ أيضاً

We propose an approach to generate realistic and high-fidelity stock market data based on generative adversarial networks (GANs). Our Stock-GAN model employs a conditional Wasserstein GAN to capture history dependence of orders. The generator design includes specially crafted aspects including components that approximate the markets auction mechanism, augmenting the order history with order-book constructions to improve the generation task. We perform an ablation study to verify the usefulness of aspects of our network structure. We provide a mathematical characterization of distribution learned by the generator. We also propose statistics to measure the quality of generated orders. We test our approach with synthetic and actual market data, compare to many baseline generative models, and find the generated data to be close to real data.
121 - Wentao Xu , Weiqing Liu , Chang Xu 2021
Stock trend forecasting, aiming at predicting the stock future trends, is crucial for investors to seek maximized profits from the stock market. Many event-driven methods utilized the events extracted from news, social media, and discussion board to forecast the stock trend in recent years. However, existing event-driven methods have two main shortcomings: 1) overlooking the influence of event information differentiated by the stock-dependent properties; 2) neglecting the effect of event information from other related stocks. In this paper, we propose a relational event-driven stock trend forecasting (REST) framework, which can address the shortcoming of existing methods. To remedy the first shortcoming, we propose to model the stock context and learn the effect of event information on the stocks under different contexts. To address the second shortcoming, we construct a stock graph and design a new propagation layer to propagate the effect of event information from related stocks. The experimental studies on the real-world data demonstrate the efficiency of our REST framework. The results of investment simulation show that our framework can achieve a higher return of investment than baselines.
Housing markets are inherently spatial, yet many existing models fail to capture this spatial dimension. Here we introduce a new graph-based approach for incorporating a spatial component in a large-scale urban housing agent-based model (ABM). The mo del explicitly captures several social and economic factors that influence the agents decision-making behaviour (such as fear of missing out, their trend following aptitude, and the strength of their submarket outreach), and interprets these factors in spatial terms. The proposed model is calibrated and validated with the housing market data for the Greater Sydney region. The ABM simulation results not only include predictions for the overall market, but also produce area-specific forecasting at the level of local government areas within Sydney as arising from individual buy and sell decisions. In addition, the simulation results elucidate agent preferences in submarkets, highlighting differences in agent behaviour, for example, between first-time home buyers and investors, and between both local and overseas investors.
61 - Sang Il Lee 2020
In recent years, hyperparameter optimization (HPO) has become an increasingly important issue in the field of machine learning for the development of more accurate forecasting models. In this study, we explore the potential of HPO in modeling stock r eturns using a deep neural network (DNN). The potential of this approach was evaluated using technical indicators and fundamentals examined based on the effect the regularization of dropouts and batch normalization for all input data. We found that the model using technical indicators and dropout regularization significantly outperforms three other models, showing a positive predictability of 0.53% in-sample and 1.11% out-of-sample, thereby indicating the possibility of beating the historical average. We also demonstrate the stability of the model in terms of the changes in its feature importance over time.
177 - Lucien Boulet 2021
Several academics have studied the ability of hybrid models mixing univariate Generalized Autoregressive Conditional Heteroskedasticity (GARCH) models and neural networks to deliver better volatility predictions than purely econometric models. Despit e presenting very promising results, the generalization of such models to the multivariate case has yet to be studied. Moreover, very few papers have examined the ability of neural networks to predict the covariance matrix of asset returns, and all use a rather small number of assets, thus not addressing what is known as the curse of dimensionality. The goal of this paper is to investigate the ability of hybrid models, mixing GARCH processes and neural networks, to forecast covariance matrices of asset returns. To do so, we propose a new model, based on multivariate GARCHs that decompose volatility and correlation predictions. The volatilities are here forecast using hybrid neural networks while correlations follow a traditional econometric process. After implementing the models in a minimum variance portfolio framework, our results are as follows. First, the addition of GARCH parameters as inputs is beneficial to the model proposed. Second, the use of one-hot-encoding to help the neural network differentiate between each stock improves the performance. Third, the new model proposed is very promising as it not only outperforms the equally weighted portfolio, but also by a significant margin its econometric counterpart that uses univariate GARCHs to predict the volatilities.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا