ﻻ يوجد ملخص باللغة العربية
The determination of the mass, composition, and geometry of matter outflows in black hole-neutron star and neutron star-neutron star binaries is crucial to current efforts to model kilonovae, and to understand the role of neutron star merger in r-process nucleosynthesis. In this manuscript, we review the simple criteria currently used in merger simulations to determine whether matter is unbound and what the asymptotic velocity of ejected material will be. We then show that properly accounting for both heating and cooling during r-process nucleosynthesis is important to accurately predict the mass and kinetic energy of the outflows. We also derive a model accounting for both of these effects that can be easily implemented in merger simulations. We show, however, that the detailed velocity distribution and geometry of the outflows can currently only be captured by full 3D fluid simulations of the outflows, as non-local effect ignored by the simple criteria used in merger simulations cannot be safely neglected when modeling these effects. Finally, we propose the introduction of simple source terms in the fluid equations to approximately account for heating/cooling from r-process nucleosynthesis in future seconds-long 3D simulations of merger remnants, without the explicit inclusion of out-of-nuclear statistical equilibrium reactions in the simulations.
Neutron star merger accretion discs can launch neutron-rich winds of $>10^{-2},mathrm{M}_odot$. This ejecta is a prime site for r-process nucleosynthesis, which will produce a range of radioactive heavy nuclei. The decay of these nuclei releases enou
We follow the longterm evolution of the dynamic ejecta of neutron star mergers for up to 100 years and over a density range of roughly 40 orders of magnitude. We include the nuclear energy input from the freshly synthesized, radioactively decaying nu
We present fitting formulae for the dynamical ejecta properties and remnant disk masses from a large sample of numerical relativity simulations. The considered data include some of the latest simulations with microphysical nuclear equations of state
We investigate generalized interacting dark matter-dark energy scenarios with a time-dependent coupling parameter, allowing also for freedom in the neutrino sector. The models are tested in the phantom and quintessence regimes, characterized by an eq
We present a first exploration of the results of neutron star-black hole mergers using black hole masses in the most likely range of $7M_odot-10M_odot$, a neutrino leakage scheme, and a modeling of the neutron star material through a finite-temperatu