ﻻ يوجد ملخص باللغة العربية
We investigate generalized interacting dark matter-dark energy scenarios with a time-dependent coupling parameter, allowing also for freedom in the neutrino sector. The models are tested in the phantom and quintessence regimes, characterized by an equation of state $w_x<-1$ and $w_x>-1$, respectively. Our analyses show that for some of the scenarios the existing tensions on the Hubble constant $H_0$ and on the clustering parameter $S_8$ can be significantly alleviated. The relief is either due to textit{(a)} a dark energy component which lies within the phantom region; or textit{(b)} the presence of a dynamical coupling in quintessence scenarios. The inclusion of massive neutrinos into the interaction schemes does not affect neither the constraints on the cosmological parameters nor the bounds on the total number or relativistic degrees of freedom $N_{rm eff}$, which are found to be extremely robust and, in general, strongly consistent with the canonical prediction $N_{rm eff}=3.045$. The most stringent bound on the total neutrino mass $M_{ u}$ is $M_{ u}<0.116$ eV and it is obtained within a quintessence scenario in which the matter mass-energy density is only mildly affected by the presence of a dynamical dark sector coupling.
Within the standard paradigm, dark energy is taken as a homogeneous fluid that drives the accelerated expansion of the universe and does not contribute to the mass of collapsed objects such as galaxies and galaxy clusters. The abundance of galaxy clu
We study a model of interacting dark matter and dark energy, in which the two components are coupled. We calculate the predictions for the 21-cm intensity mapping power spectra, and forecast the detectability with future single-dish intensity mapping
In this work we have used the recent cosmic chronometers data along with the latest estimation of the local Hubble parameter value, $H_0$ at 2.4% precision as well as the standard dark energy probes, such as the Supernovae Type Ia, baryon acoustic os
In this article we compare a variety of well known dynamical dark energy models using the cosmic microwave background measurements from the 2018 Planck legacy and 2015 Planck data releases, the baryon acoustic oscillations measurements and the local
We propose a minimal model that can explain the electroweak scale, neutrino masses, Dark Matter (DM), and successful inflation all at once based on the multicritical-point principle (MPP). The model has two singlet scalar fields that realize an analo