ﻻ يوجد ملخص باللغة العربية
Neutron star merger accretion discs can launch neutron-rich winds of $>10^{-2},mathrm{M}_odot$. This ejecta is a prime site for r-process nucleosynthesis, which will produce a range of radioactive heavy nuclei. The decay of these nuclei releases enough energy to accelerate portions of the wind by ~0.1c. Here, we investigate the effect of r-process heating on the dynamical evolution of disc winds. We extract the wind from a 3D general relativistic magnetohydrodynamic simulation of a disc from a post-merger system. This is used to create inner boundary conditions for 2D hydrodynamic simulations that continue the original 3D simulation. We perform two such simulations: one that includes the r-process heating, and another one that does not. We follow the hydrodynamic simulations until the winds reach homology (60 seconds). Using time-dependent multi-frequency multi-dimensional Monte Carlo radiation transport simulations, we then calculate the kilonova light curves from the winds with and without dynamical r-process heating. We find that the r-process heating can substantially alter the velocity distribution of the wind, shifting the mass-weighted median velocity from 0.06c to 0.12c. The inclusion of the dynamical r-process heating makes the light curve brighter and bluer at ~1 d post-merger. However, the high-velocity tail of the ejecta distribution and the early light curves are largely unaffected.
We study here the formation of heavy r-process nuclei in the high-entropy environment of rapidly expanding neutrino-driven winds from compact objects. In particular, we explore the sensitivity of the element creation in the A>130 region to the low-te
We follow the longterm evolution of the dynamic ejecta of neutron star mergers for up to 100 years and over a density range of roughly 40 orders of magnitude. We include the nuclear energy input from the freshly synthesized, radioactively decaying nu
Comparing observational abundance features with nucleosynthesis predictions of stellar evolution or explosion simulations can scrutinize two aspects: (a) the conditions in the astrophysical production site and (b) the quality of the nuclear physics i
The determination of the mass, composition, and geometry of matter outflows in black hole-neutron star and neutron star-neutron star binaries is crucial to current efforts to model kilonovae, and to understand the role of neutron star merger in r-pro
We have collected the parameter of 38 neutron stars (NSs) in binary systems with spin periods and measured masses. By adopting the Boot-strap method, we reproduced the procedure of mass calculated for each system separately, to determine the truly ma