ترغب بنشر مسار تعليمي؟ اضغط هنا

ASVspoof 2021: accelerating progress in spoofed and deepfake speech detection

92   0   0.0 ( 0 )
 نشر من قبل Jose Patino
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

ASVspoof 2021 is the forth edition in the series of bi-annual challenges which aim to promote the study of spoofing and the design of countermeasures to protect automatic speaker verification systems from manipulation. In addition to a continued focus upon logical and physical access tasks in which there are a number of advances compared to previous editions, ASVspoof 2021 introduces a new task involving deepfake speech detection. This paper describes all three tasks, the new databases for each of them, the evaluation metrics, four challenge baselines, the evaluation platform and a summary of challenge results. Despite the introduction of channel and compression variability which compound the difficulty, results for the logical access and deepfake tasks are close to those from previous ASVspoof editions. Results for the physical access task show the difficulty in detecting attacks in real, variable physical spaces. With ASVspoof 2021 being the first edition for which participants were not provided with any matched training or development data and with this reflecting real conditions in which the nature of spoofed and deepfake speech can never be predicated with confidence, the results are extremely encouraging and demonstrate the substantial progress made in the field in recent years.



قيم البحث

اقرأ أيضاً

The automatic speaker verification spoofing and countermeasures (ASVspoof) challenge series is a community-led initiative which aims to promote the consideration of spoofing and the development of countermeasures. ASVspoof 2021 is the 4th in a series of bi-annual, competitive challenges where the goal is to develop countermeasures capable of discriminating between bona fide and spoofed or deepfake speech. This document provides a technical description of the ASVspoof 2021 challenge, including details of training, development and evaluation data, metrics, baselines, evaluation rules, submission procedures and the schedule.
The ASVspoof initiative was conceived to spearhead research in anti-spoofing for automatic speaker verification (ASV). This paper describes the third in a series of bi-annual challenges: ASVspoof 2019. With the challenge database and protocols being described elsewhere, the focus of this paper is on results and the top performing single and ensemble system submissions from 62 teams, all of which out-perform the two baseline systems, often by a substantial margin. Deeper analyses shows that performance is dominated by specific conditions involving either specific spoofing attacks or specific acoustic environments. While fusion is shown to be particularly effective for the logical access scenario involving speech synthesis and voice conversion attacks, participants largely struggled to apply fusion successfully for the physical access scenario involving simulated replay attacks. This is likely the result of a lack of system complementarity, while oracle fusion experiments show clear potential to improve performance. Furthermore, while results for simulated data are promising, experiments with real replay data show a substantial gap, most likely due to the presence of additive noise in the latter. This finding, among others, leads to a number of ideas for further research and directions for future editions of the ASVspoof challenge.
Automatic speaker verification (ASV) is one of the most natural and convenient means of biometric person recognition. Unfortunately, just like all other biometric systems, ASV is vulnerable to spoofing, also referred to as presentation attacks. These vulnerabilities are generally unacceptable and call for spoofing countermeasures or presentation attack detection systems. In addition to impersonation, ASV systems are vulnerable to replay, speech synthesis, and voice conversion attacks. The ASVspoof 2019 edition is the first to consider all three spoofing attack types within a single challenge. While they originate from the same source database and same underlying protocol, they are explored in two specific use case scenarios. Spoofing attacks within a logical access (LA) scenario are generated with the latest speech synthesis and voice conversion technologies, including state-of-the-art neural acoustic and waveform model techniques. Replay spoofing attacks within a physical access (PA) scenario are generated through carefully controlled simulations that support much more revealing analysis than possible previously. Also new to the 2019 edition is the use of the tandem detection cost function metric, which reflects the impact of spoofing and countermeasures on the reliability of a fixed ASV system. This paper describes the database design, protocol, spoofing attack implementations, and baseline ASV and countermeasure results. It also describes a human assessment on spoofed data in logical access. It was demonstrated that the spoofing data in the ASVspoof 2019 database have varied degrees of perceived quality and similarity to the target speakers, including spoofed data that cannot be differentiated from bona-fide utterances even by human subjects.
End-to-end approaches to anti-spoofing, especially those which operate directly upon the raw signal, are starting to be competitive with their more traditional counterparts. Until recently, all such approaches consider only the learning of network pa rameters; the network architecture is still hand crafted. This too, however, can also be learned. Described in this paper is our attempt to learn automatically the network architecture of a speech deepfake and spoofing detection solution, while jointly optimising other network components and parameters, such as the first convolutional layer which operates on raw signal inputs. The resulting raw differentiable architecture search system delivers a tandem detection cost function score of 0.0517 for the ASVspoof 2019 logical access database, a result which is among the best single-system results reported to date.
Existing deepfake-detection methods focus on passive detection, i.e., they detect fake face images via exploiting the artifacts produced during deepfake manipulation. A key limitation of passive detection is that it cannot detect fake faces that are generated by new deepfake generation methods. In this work, we propose FaceGuard, a proactive deepfake-detection framework. FaceGuard embeds a watermark into a real face image before it is published on social media. Given a face image that claims to be an individual (e.g., Nicolas Cage), FaceGuard extracts a watermark from it and predicts the face image to be fake if the extracted watermark does not match well with the individuals ground truth one. A key component of FaceGuard is a new deep-learning-based watermarking method, which is 1) robust to normal image post-processing such as JPEG compression, Gaussian blurring, cropping, and resizing, but 2) fragile to deepfake manipulation. Our evaluation on multiple datasets shows that FaceGuard can detect deepfakes accurately and outperforms existing methods.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا