ترغب بنشر مسار تعليمي؟ اضغط هنا

Raw Differentiable Architecture Search for Speech Deepfake and Spoofing Detection

220   0   0.0 ( 0 )
 نشر من قبل Wanying Ge
 تاريخ النشر 2021
  مجال البحث هندسة إلكترونية
والبحث باللغة English




اسأل ChatGPT حول البحث

End-to-end approaches to anti-spoofing, especially those which operate directly upon the raw signal, are starting to be competitive with their more traditional counterparts. Until recently, all such approaches consider only the learning of network parameters; the network architecture is still hand crafted. This too, however, can also be learned. Described in this paper is our attempt to learn automatically the network architecture of a speech deepfake and spoofing detection solution, while jointly optimising other network components and parameters, such as the first convolutional layer which operates on raw signal inputs. The resulting raw differentiable architecture search system delivers a tandem detection cost function score of 0.0517 for the ASVspoof 2019 logical access database, a result which is among the best single-system results reported to date.



قيم البحث

اقرأ أيضاً

This paper reports the first successful application of a differentiable architecture search (DARTS) approach to the deepfake and spoofing detection problems. An example of neural architecture search, DARTS operates upon a continuous, differentiable s earch space which enables both the architecture and parameters to be optimised via gradient descent. Solutions based on partially-connected DARTS use random channel masking in the search space to reduce GPU time and automatically learn and optimise complex neural architectures composed of convolutional operations and residual blocks. Despite being learned quickly with little human effort, the resulting networks are competitive with the best performing systems reported in the literature. Some are also far less complex, containing 85% fewer parameters than a Res2Net competitor.
Artefacts that serve to distinguish bona fide speech from spoofed or deepfake speech are known to reside in specific subbands and temporal segments. Various approaches can be used to capture and model such artefacts, however, none works well across a spectrum of diverse spoofing attacks. Reliable detection then often depends upon the fusion of multiple detection systems, each tuned to detect different forms of attack. In this paper we show that better performance can be achieved when the fusion is performed within the model itself and when the representation is learned automatically from raw waveform inputs. The principal contribution is a spectro-temporal graph attention network (GAT) which learns the relationship between cues spanning different sub-bands and temporal intervals. Using a model-level graph fusion of spectral (S) and temporal (T) sub-graphs and a graph pooling strategy to improve discrimination, the proposed RawGAT-ST model achieves an equal error rate of 1.06 % for the ASVspoof 2019 logical access database. This is one of the best results reported to date and is reproducible using an open source implementation.
ASVspoof 2021 is the forth edition in the series of bi-annual challenges which aim to promote the study of spoofing and the design of countermeasures to protect automatic speaker verification systems from manipulation. In addition to a continued focu s upon logical and physical access tasks in which there are a number of advances compared to previous editions, ASVspoof 2021 introduces a new task involving deepfake speech detection. This paper describes all three tasks, the new databases for each of them, the evaluation metrics, four challenge baselines, the evaluation platform and a summary of challenge results. Despite the introduction of channel and compression variability which compound the difficulty, results for the logical access and deepfake tasks are close to those from previous ASVspoof editions. Results for the physical access task show the difficulty in detecting attacks in real, variable physical spaces. With ASVspoof 2021 being the first edition for which participants were not provided with any matched training or development data and with this reflecting real conditions in which the nature of spoofed and deepfake speech can never be predicated with confidence, the results are extremely encouraging and demonstrate the substantial progress made in the field in recent years.
Smart audio devices are gated by an always-on lightweight keyword spotting program to reduce power consumption. It is however challenging to design models that have both high accuracy and low latency for accurate and fast responsiveness. Many efforts have been made to develop end-to-end neural networks, in which depthwise separable convolutions, temporal convolutions, and LSTMs are adopted as building units. Nonetheless, these networks designed with human expertise may not achieve an optimal trade-off in an expansive search space. In this paper, we propose to leverage recent advances in differentiable neural architecture search to discover more efficient networks. Our searched model attains 97.2% top-1 accuracy on Google Speech Command Dataset v1 with only nearly 100K parameters.
The ASVspoof initiative was conceived to spearhead research in anti-spoofing for automatic speaker verification (ASV). This paper describes the third in a series of bi-annual challenges: ASVspoof 2019. With the challenge database and protocols being described elsewhere, the focus of this paper is on results and the top performing single and ensemble system submissions from 62 teams, all of which out-perform the two baseline systems, often by a substantial margin. Deeper analyses shows that performance is dominated by specific conditions involving either specific spoofing attacks or specific acoustic environments. While fusion is shown to be particularly effective for the logical access scenario involving speech synthesis and voice conversion attacks, participants largely struggled to apply fusion successfully for the physical access scenario involving simulated replay attacks. This is likely the result of a lack of system complementarity, while oracle fusion experiments show clear potential to improve performance. Furthermore, while results for simulated data are promising, experiments with real replay data show a substantial gap, most likely due to the presence of additive noise in the latter. This finding, among others, leads to a number of ideas for further research and directions for future editions of the ASVspoof challenge.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا