ترغب بنشر مسار تعليمي؟ اضغط هنا

A Novel Probe of Quantum Many-Body Correlations by Path-Independent Ramping Dynamics

190   0   0.0 ( 0 )
 نشر من قبل Jiazhong Hu
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Quantum many-body systems exhibit diverse phases characterized by various types of correlations. One aspect of quantum correlations is whether a quantum phase is gapless or gapped, and there are already well-developed tools to probe these correlations. Another aspect is whether a quantum phase possesses a well-defined quasi-particle description or not, and the experimental method sensitive to this is still less developed. Here we present a protocol probing many-body correlations by time-dependently ramping a parameter in Hamiltonians to the same target value with variable velocities. The first-order correction beyond the adiabatic limit due to the finite ramping velocity is universal and path-independent, and reveals many-body correlations of the equilibrium phases at the target values. We term this method as the non-adiabatic linear response, and experimentally demonstrate it in studying the Bose-Hubbard model in ultracold-atom platforms. It is shown both theoretically and experimentally that this non-adiabatic linear response is significant in the quantum critical regime without well-defined quasi-particles, and is vanishingly small deeply in both superfluid and Mott insulators with well-defined quasi-particles.

قيم البحث

اقرأ أيضاً

151 - Zhiyuan Yao , Lei Pan , Shang Liu 2021
In this letter, we study the PXP Hamiltonian with an external magnetic field that exhibits both quantum scar states and quantum criticality. It is known that this model hosts a series of quantum many-body scar states violating quantum thermalization at zero magnetic field, and it also exhibits an Ising quantum phase transition driven by finite magnetic field. Although the former involves the properties of generic excited states and the latter concerns the low-energy physics, we discover two surprising connections between them, inspired by the observation that both states possess log-volume law entanglement entropies. First, we show that the quantum many-body scar states can be tracked to a set of quantum critical states, whose nature can be understood as pair-wisely occupied Fermi sea states. Second, we show that the partial violation of quantum thermalization diminishes in the quantum critical regime. We envision that these connections can be extended to general situations and readily verified in existing cold atom experimental platforms.
We experimentally demonstrate how thermal properties in an non-equilibrium quantum many- body system emerge locally, spread in space and time, and finally lead to the globally relaxed state. In our experiment, we quench a one-dimensional (1D) Bose ga s by coherently splitting it into two parts. By monitoring the phase coherence between the two parts we observe that the thermal correlations of a prethermalized state emerge locally in their final form and propagate through the system in a light-cone-like evolution. Our results underline the close link between the propagation of correlations and relaxation processes in quantum many-body systems.
In the theory of Bethe-ansatz integrable quantum systems, rapidities play an important role as they are used to specify many-body states, apart from phases. The physical interpretation of rapidities going back to Sutherland is that they are the asymp totic momenta after letting a quantum gas expand into a larger volume making it dilute and noninteracting. We exploit this picture to make a direct connection to quantities that are accessible in sudden-expansion experiments with ultracold quantum gases. By a direct comparison of Bethe-ansatz and time-dependent density matrix renormalization group results, we demonstrate that the expansion velocity of a one-dimensional Fermi-Hubbard model can be predicted from knowing the distribution of occupied rapidities defined by the initial state. Curiously, an approximate Bethe-ansatz solution works well also for the Bose-Hubbard model.
The collective and quantum behavior of many-body systems may be harnessed to achieve fast charging of energy storage devices, which have been recently dubbed quantum batteries. In this paper, we present an extensive numerical analysis of energy flow in a quantum battery described by a disordered quantum Ising chain Hamiltonian, whose equilibrium phase diagram presents many-body localized (MBL), Anderson localized (AL), and ergodic phases. We demonstrate that i) the low amount of entanglement of the MBL phase guarantees much better work extraction capabilities than the ergodic phase and ii) interactions suppress temporal energy fluctuations in comparison with those of the non-interacting AL phase. Finally, we show that the statistical distribution of values of the optimal charging time is a clear-cut diagnostic tool of the MBL phase.
We study the ground state properties and nonequilibrium dynamics of two spinor bosonic impurities immersed in a one-dimensional bosonic gas upon applying an interspecies interaction quench. For the ground state of two non-interacting impurities we re veal signatures of attractive induced interactions in both cases of attractive or repulsive interspecies interactions, while a weak impurity-impurity repulsion forces the impurities to stay apart. Turning to the quench dynamics we inspect the time-evolution of the contrast unveiling the existence, dynamical deformation and the orthogonality catastrophe of Bose polarons. We find that for an increasing postquench repulsion the impurities reside in a superposition of two distinct two-body configurations while at strong repulsions their corresponding two-body correlation patterns show a spatially delocalized behavior evincing the involvement of higher excited states. For attractive interspecies couplings, the impurities exhibit a tendency to localize at the origin and remarkably for strong attractions they experience a mutual attraction on the two-body level that is imprinted as a density hump on the bosonic bath.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا