ﻻ يوجد ملخص باللغة العربية
Quantum many-body systems exhibit diverse phases characterized by various types of correlations. One aspect of quantum correlations is whether a quantum phase is gapless or gapped, and there are already well-developed tools to probe these correlations. Another aspect is whether a quantum phase possesses a well-defined quasi-particle description or not, and the experimental method sensitive to this is still less developed. Here we present a protocol probing many-body correlations by time-dependently ramping a parameter in Hamiltonians to the same target value with variable velocities. The first-order correction beyond the adiabatic limit due to the finite ramping velocity is universal and path-independent, and reveals many-body correlations of the equilibrium phases at the target values. We term this method as the non-adiabatic linear response, and experimentally demonstrate it in studying the Bose-Hubbard model in ultracold-atom platforms. It is shown both theoretically and experimentally that this non-adiabatic linear response is significant in the quantum critical regime without well-defined quasi-particles, and is vanishingly small deeply in both superfluid and Mott insulators with well-defined quasi-particles.
In this letter, we study the PXP Hamiltonian with an external magnetic field that exhibits both quantum scar states and quantum criticality. It is known that this model hosts a series of quantum many-body scar states violating quantum thermalization
We experimentally demonstrate how thermal properties in an non-equilibrium quantum many- body system emerge locally, spread in space and time, and finally lead to the globally relaxed state. In our experiment, we quench a one-dimensional (1D) Bose ga
In the theory of Bethe-ansatz integrable quantum systems, rapidities play an important role as they are used to specify many-body states, apart from phases. The physical interpretation of rapidities going back to Sutherland is that they are the asymp
The collective and quantum behavior of many-body systems may be harnessed to achieve fast charging of energy storage devices, which have been recently dubbed quantum batteries. In this paper, we present an extensive numerical analysis of energy flow
We study the ground state properties and nonequilibrium dynamics of two spinor bosonic impurities immersed in a one-dimensional bosonic gas upon applying an interspecies interaction quench. For the ground state of two non-interacting impurities we re