ترغب بنشر مسار تعليمي؟ اضغط هنا

Bubblewrap: Online tiling and real-time flow prediction on neural manifolds

106   0   0.0 ( 0 )
 نشر من قبل Anne Watson Draelos
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

While most classic studies of function in experimental neuroscience have focused on the coding properties of individual neurons, recent developments in recording technologies have resulted in an increasing emphasis on the dynamics of neural populations. This has given rise to a wide variety of models for analyzing population activity in relation to experimental variables, but direct testing of many neural population hypotheses requires intervening in the system based on current neural state, necessitating models capable of inferring neural state online. Existing approaches, primarily based on dynamical systems, require strong parametric assumptions that are easily violated in the noise-dominated regime and do not scale well to the thousands of data channels in modern experiments. To address this problem, we propose a method that combines fast, stable dimensionality reduction with a soft tiling of the resulting neural manifold, allowing dynamics to be approximated as a probability flow between tiles. This method can be fit efficiently using online expectation maximization, scales to tens of thousands of tiles, and outperforms existing methods when dynamics are noise-dominated or feature multi-modal transition probabilities. The resulting model can be trained at kiloHertz data rates, produces accurate approximations of neural dynamics within minutes, and generates predictions on submillisecond time scales. It retains predictive performance throughout many time steps into the future and is fast enough to serve as a component of closed-loop causal experiments.



قيم البحث

اقرأ أيضاً

One of the primary goals of systems neuroscience is to relate the structure of neural circuits to their function, yet patterns of connectivity are difficult to establish when recording from large populations in behaving organisms. Many previous appro aches have attempted to estimate functional connectivity between neurons using statistical modeling of observational data, but these approaches rely heavily on parametric assumptions and are purely correlational. Recently, however, holographic photostimulation techniques have made it possible to precisely target selected ensembles of neurons, offering the possibility of establishing direct causal links. Here, we propose a method based on noisy group testing that drastically increases the efficiency of this process in sparse networks. By stimulating small ensembles of neurons, we show that it is possible to recover binarized network connectivity with a number of tests that grows only logarithmically with population size under minimal statistical assumptions. Moreover, we prove that our approach, which reduces to an efficiently solvable convex optimization problem, can be related to Variational Bayesian inference on the binary connection weights, and we derive rigorous bounds on the posterior marginals. This allows us to extend our method to the streaming setting, where continuously updated posteriors allow for optional stopping, and we demonstrate the feasibility of inferring connectivity for networks of up to tens of thousands of neurons online. Finally, we show how our work can be theoretically linked to compressed sensing approaches, and compare results for connectivity inference in different settings.
415 - Qi She , Anqi Wu 2019
Latent dynamics discovery is challenging in extracting complex dynamics from high-dimensional noisy neural data. Many dimensionality reduction methods have been widely adopted to extract low-dimensional, smooth and time-evolving latent trajectories. However, simple state transition structures, linear embedding assumptions, or inflexible inference networks impede the accurate recovery of dynamic portraits. In this paper, we propose a novel latent dynamic model that is capable of capturing nonlinear, non-Markovian, long short-term time-dependent dynamics via recurrent neural networks and tackling complex nonlinear embedding via non-parametric Gaussian process. Due to the complexity and intractability of the model and its inference, we also provide a powerful inference network with bi-directional long short-term memory networks that encode both past and future information into posterior distributions. In the experiment, we show that our model outperforms other state-of-the-art methods in reconstructing insightful latent dynamics from both simulated and experimental neural datasets with either Gaussian or Poisson observations, especially in the low-sample scenario. Our codes and additional materials are available at https://github.com/sheqi/GP-RNN_UAI2019.
Predicting the spread and containment of COVID-19 is a challenge of utmost importance that the broader scientific community is currently facing. One of the main sources of difficulty is that a very limited amount of daily COVID-19 case data is availa ble, and with few exceptions, the majority of countries are currently in the exponential spread stage, and thus there is scarce information available which would enable one to predict the phase transition between spread and containment. In this paper, we propose a novel approach to predicting the spread of COVID-19 based on dictionary learning and online nonnegative matrix factorization (online NMF). The key idea is to learn dictionary patterns of short evolution instances of the new daily cases in multiple countries at the same time, so that their latent correlation structures are captured in the dictionary patterns. We first learn such patterns by minibatch learning from the entire time-series and then further adapt them to the time-series by online NMF. As we progressively adapt and improve the learned dictionary patterns to the more recent observations, we also use them to make one-step predictions by the partial fitting. Lastly, by recursively applying the one-step predictions, we can extrapolate our predictions into the near future. Our prediction results can be directly attributed to the learned dictionary patterns due to their interpretability.
Convolutional Neural Networks (CNN) outperform traditional classification methods in many domains. Recently these methods have gained attention in neuroscience and particularly in brain-computer interface (BCI) community. Here, we introduce a CNN opt imized for classification of brain states from magnetoencephalographic (MEG) measurements. Our CNN design is based on a generative model of the electromagnetic (EEG and MEG) brain signals and is readily interpretable in neurophysiological terms. We show here that the proposed network is able to decode event-related responses as well as modulations of oscillatory brain activity and that it outperforms more complex neural networks and traditional classifiers used in the field. Importantly, the model is robust to inter-individual differences and can successfully generalize to new subjects in offline and online classification.
With the explosive growth of e-commerce and the booming of e-payment, detecting online transaction fraud in real time has become increasingly important to Fintech business. To tackle this problem, we introduce the TitAnt, a transaction fraud detectio n system deployed in Ant Financial, one of the largest Fintech companies in the world. The system is able to predict online real-time transaction fraud in mere milliseconds. We present the problem definition, feature extraction, detection methods, implementation and deployment of the system, as well as empirical effectiveness. Extensive experiments have been conducted on large real-world transaction data to show the effectiveness and the efficiency of the proposed system.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا