ﻻ يوجد ملخص باللغة العربية
Latent dynamics discovery is challenging in extracting complex dynamics from high-dimensional noisy neural data. Many dimensionality reduction methods have been widely adopted to extract low-dimensional, smooth and time-evolving latent trajectories. However, simple state transition structures, linear embedding assumptions, or inflexible inference networks impede the accurate recovery of dynamic portraits. In this paper, we propose a novel latent dynamic model that is capable of capturing nonlinear, non-Markovian, long short-term time-dependent dynamics via recurrent neural networks and tackling complex nonlinear embedding via non-parametric Gaussian process. Due to the complexity and intractability of the model and its inference, we also provide a powerful inference network with bi-directional long short-term memory networks that encode both past and future information into posterior distributions. In the experiment, we show that our model outperforms other state-of-the-art methods in reconstructing insightful latent dynamics from both simulated and experimental neural datasets with either Gaussian or Poisson observations, especially in the low-sample scenario. Our codes and additional materials are available at https://github.com/sheqi/GP-RNN_UAI2019.
In a recurrent setting, conventional approaches to neural architecture search find and fix a general model for all data samples and time steps. We propose a novel algorithm that can dynamically search for the structure of cells in a recurrent neural
Process Mining consists of techniques where logs created by operative systems are transformed into process models. In process mining tools it is often desired to be able to classify ongoing process instances, e.g., to predict how long the process wil
Recurrent neural networks (RNNs) are notoriously difficult to train. When the eigenvalues of the hidden to hidden weight matrix deviate from absolute value 1, optimization becomes difficult due to the well studied issue of vanishing and exploding gra
Recurrent Neural Networks (RNNs) are used in state-of-the-art models in domains such as speech recognition, machine translation, and language modelling. Sparsity is a technique to reduce compute and memory requirements of deep learning models. Sparse
Automated methods for Alzheimers disease (AD) classification have the potential for great clinical benefits and may provide insight for combating the disease. Machine learning, and more specifically deep neural networks, have been shown to have great