ترغب بنشر مسار تعليمي؟ اضغط هنا

Neural Dynamics Discovery via Gaussian Process Recurrent Neural Networks

416   0   0.0 ( 0 )
 نشر من قبل Qi She
 تاريخ النشر 2019
والبحث باللغة English




اسأل ChatGPT حول البحث

Latent dynamics discovery is challenging in extracting complex dynamics from high-dimensional noisy neural data. Many dimensionality reduction methods have been widely adopted to extract low-dimensional, smooth and time-evolving latent trajectories. However, simple state transition structures, linear embedding assumptions, or inflexible inference networks impede the accurate recovery of dynamic portraits. In this paper, we propose a novel latent dynamic model that is capable of capturing nonlinear, non-Markovian, long short-term time-dependent dynamics via recurrent neural networks and tackling complex nonlinear embedding via non-parametric Gaussian process. Due to the complexity and intractability of the model and its inference, we also provide a powerful inference network with bi-directional long short-term memory networks that encode both past and future information into posterior distributions. In the experiment, we show that our model outperforms other state-of-the-art methods in reconstructing insightful latent dynamics from both simulated and experimental neural datasets with either Gaussian or Poisson observations, especially in the low-sample scenario. Our codes and additional materials are available at https://github.com/sheqi/GP-RNN_UAI2019.



قيم البحث

اقرأ أيضاً

203 - Xin Qian , Matthew Kennedy , 2019
In a recurrent setting, conventional approaches to neural architecture search find and fix a general model for all data samples and time steps. We propose a novel algorithm that can dynamically search for the structure of cells in a recurrent neural network model. Based on a combination of recurrent and recursive neural networks, our algorithm is able to construct customized cell structures for each data sample and time step, allowing for a more efficient architecture search than existing models. Experiments on three common datasets show that the algorithm discovers high-performance cell architectures and achieves better prediction accuracy compared to the GRU structure for language modelling and sentiment analysis.
Process Mining consists of techniques where logs created by operative systems are transformed into process models. In process mining tools it is often desired to be able to classify ongoing process instances, e.g., to predict how long the process wil l still require to complete, or to classify process instances to different classes based only on the activities that have occurred in the process instance thus far. Recurrent neural networks and its subclasses, such as Gated Recurrent Unit (GRU) and Long Short-Term Memory (LSTM), have been demonstrated to be able to learn relevant temporal features for subsequent classification tasks. In this paper we apply recurrent neural networks to classifying process instances. The proposed model is trained in a supervised fashion using labeled process instances extracted from event log traces. This is the first time we know of GRU having been used in classifying business process instances. Our main experimental results shows that GRU outperforms LSTM remarkably in training time while giving almost identical accuracies to LSTM models. Additional contributions of our paper are improving the classification model training time by filtering infrequent activities, which is a technique commonly used, e.g., in Natural Language Processing (NLP).
Recurrent neural networks (RNNs) are notoriously difficult to train. When the eigenvalues of the hidden to hidden weight matrix deviate from absolute value 1, optimization becomes difficult due to the well studied issue of vanishing and exploding gra dients, especially when trying to learn long-term dependencies. To circumvent this problem, we propose a new architecture that learns a unitary weight matrix, with eigenvalues of absolute value exactly 1. The challenge we address is that of parametrizing unitary matrices in a way that does not require expensive computations (such as eigendecomposition) after each weight update. We construct an expressive unitary weight matrix by composing several structured matrices that act as building blocks with parameters to be learned. Optimization with this parameterization becomes feasible only when considering hidden states in the complex domain. We demonstrate the potential of this architecture by achieving state of the art results in several hard tasks involving very long-term dependencies.
Recurrent Neural Networks (RNNs) are used in state-of-the-art models in domains such as speech recognition, machine translation, and language modelling. Sparsity is a technique to reduce compute and memory requirements of deep learning models. Sparse RNNs are easier to deploy on devices and high-end server processors. Even though sparse operations need less compute and memory relative to their dense counterparts, the speed-up observed by using sparse operations is less than expected on different hardware platforms. In order to address this issue, we investigate two different approaches to induce block sparsity in RNNs: pruning blocks of weights in a layer and using group lasso regularization to create blocks of weights with zeros. Using these techniques, we demonstrate that we can create block-sparse RNNs with sparsity ranging from 80% to 90% with small loss in accuracy. This allows us to reduce the model size by roughly 10x. Additionally, we can prune a larger dense network to recover this loss in accuracy while maintaining high block sparsity and reducing the overall parameter count. Our technique works with a variety of block sizes up to 32x32. Block-sparse RNNs eliminate overheads related to data storage and irregular memory accesses while increasing hardware efficiency compared to unstructured sparsity.
Automated methods for Alzheimers disease (AD) classification have the potential for great clinical benefits and may provide insight for combating the disease. Machine learning, and more specifically deep neural networks, have been shown to have great efficacy in this domain. These algorithms often use neurological imaging data such as MRI and PET, but a comprehensive and balanced comparison of these modalities has not been performed. In order to accurately determine the relative strength of each imaging variant, this work performs a comparison study in the context of Alzheimers dementia classification using the Alzheimers Disease Neuroimaging Initiative (ADNI) dataset. Furthermore, this work analyzes the benefits of using both modalities in a fusion setting and discusses how these data types may be leveraged in future AD studies using deep learning.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا