ﻻ يوجد ملخص باللغة العربية
We present a review on the study of metastable silicon, primarily focusing mainly on the aspects of liquid-liquid transition, critical point and phase behaviour, structural and dynamic properties of liquid phase as well as crystal nucleation. We begin with an extensive survey of the investigations of liquid silicon pursued over three decades, with salient experimental, theoretical and simulation results. Following which we present various scenarios put forward to rationalize the density and related anomalies often observed in water and other network forming liquids. After which we present the more recent investigations (both simulation and experimental works) of the phase behavior of Silicon. Since a significant part of metastable silicon work is on a classical empirical potential an important question to address is the reliability of this potential in describing the behavior of silicon. To provide a critical assessment of the applicability of classical simulation results to real silicon we present a comparison of the structural, dynamical, and thermodynamic quantities obtained from the SW potential with those from ab initio simulations and with available experimental data. We also discuss the sensitivity of the thermodynamic properties to model parameters.
A novel liquid-liquid phase transition has been proposed and investigated in a wide variety of pure substances recently, including water, silica and silicon. From computer simulations using the Stillinger-Weber classical empirical potential, Sastry a
A bulk metallic glass forming alloy is subjected to shear flow in its supercooled state by compression of a short rod to produce a flat disc. The resulting material exhibits enhanced crystallization kinetics during isothermal annealing as reflected i
Water shows intriguing thermodynamic and dynamic anomalies in the supercooled liquid state. One possible explanation of the origin of these anomalies lies in the existence of a metastable liquid-liquid phase transition (LLPT) between two (high and lo
We propose a unified model combining the first-order liquid-liquid and the second-order ferroelectric phase transitions models and explaining various features of the $lambda$-point of liquid water within a single theoretical framework. It becomes cle