ترغب بنشر مسار تعليمي؟ اضغط هنا

Shear accelerated crystallization in a supercooled atomic liquid

132   0   0.0 ( 0 )
 نشر من قبل Chinedum Osuji
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A bulk metallic glass forming alloy is subjected to shear flow in its supercooled state by compression of a short rod to produce a flat disc. The resulting material exhibits enhanced crystallization kinetics during isothermal annealing as reflected in the decrease of the crystallization time relative to the non-deformed case. The transition from quiescent to shear-accelerated crystallization is linked to strain accumulated during shear flow above a critical shear rate $dotgamma_capprox 0.3$ s$^{-1}$ which corresponds to P{e}clet number, $Pesimmathcal{O}(1)$. The observation of shear accelerated crystallization in an atomic system at modest shear rates is uncommon. It is made possible here by the substantial viscosity of the supercooled liquid which increases strongly with temperature in the approach to the glass transition. We may therefore anticipate the encounter of non-trivial shear-related effects during thermoplastic deformation of similar systems.

قيم البحث

اقرأ أيضاً

The process of homogeneous crystal nucleation has been considered in a model liquid, where the interparticle interaction is described by a short-range spherical oscillatory potential. Mechanisms of initiating structural ordering in the liquid at vari ous supercooling levels, including those corresponding to an amorphous state, have been determined. The sizes and shapes of formed crystal grains have been estimated statistically. The results indicate that the mechanisms of nucleation occurs throughout the entire considered temperature range. The crystallization of the system at low supercooling levels occurs through a mononuclear scenario. A high concentration of crystal nuclei formed at high supercooling levels (i.e., at temperatures comparable to and below the glass transition temperature $T_g$) creates the semblance of the presence of branched structures, which is sometimes erroneously interpreted as a signature of phase separation. The temperature dependence of the maximum concentration of crystal grains demonstrates two regimes the transition between which occurs at a temperature comparable to the glass transition temperature $T_g$.
We present a review on the study of metastable silicon, primarily focusing mainly on the aspects of liquid-liquid transition, critical point and phase behaviour, structural and dynamic properties of liquid phase as well as crystal nucleation. We begi n with an extensive survey of the investigations of liquid silicon pursued over three decades, with salient experimental, theoretical and simulation results. Following which we present various scenarios put forward to rationalize the density and related anomalies often observed in water and other network forming liquids. After which we present the more recent investigations (both simulation and experimental works) of the phase behavior of Silicon. Since a significant part of metastable silicon work is on a classical empirical potential an important question to address is the reliability of this potential in describing the behavior of silicon. To provide a critical assessment of the applicability of classical simulation results to real silicon we present a comparison of the structural, dynamical, and thermodynamic quantities obtained from the SW potential with those from ab initio simulations and with available experimental data. We also discuss the sensitivity of the thermodynamic properties to model parameters.
By means of Raman spectroscopy of liquid microjets we have investigated the crystallization process of supercooled quantum liquid mixtures composed of parahydrogen (pH$_2$) diluted with small amounts of up to 5% of either neon or orthodeuterium (oD$_ 2$), and of oD$_2$ diluted with either Ne or pH$_2$. We show that the introduction of Ne impurities affects the crystallization kinetics in both the pH$_2$-Ne and oD$_2$-Ne mixtures in terms of a significant reduction of the crystal growth rate, similarly to what found in our previous work on supercooled pH$_2$-oD$_2$ liquid mixtures [M. Kuhnel et {it al.}, Phys. Rev. B textbf{89}, 180506(R) (2014)]. Our experimental results, in combination with path-integral simulations of the supercooled liquid mixtures, suggest in particular a correlation between the measured growth rates and the ratio of the effective particle sizes originating from quantum delocalization effects. We further show that the crystalline structure of the mixture is also affected to a large extent by the presence of the Ne impurities, which likely initiate the freezing process through the formation of Ne crystallites.
Below the melting temperature $T_m$ crystals are the stable phase of typical elemental or molecular systems. However, cooling down a liquid below $T_m$, crystallization is anything but inevitable. The liquid can be supercooled, eventually forming a g lass below the glass transition temperature $T_g$. Despite their long lifetimes and the presence of strong barriers that produces an apparent stability, supercooled liquids and glasses remain intrinsically metastable state and thermodynamically unstable towards the crystal. Here we investigated the isothermal crystallization kinetics of the prototypical strong glassformer GeO$_2$ in the deep supercooled liquid at 1100 K, about half-way between $T_m$ and $T_g$. The crystallization process has been observed through time-resolved neutron diffraction for about three days. Data show a continuous reorganization of the amorphous structure towards the alpha-quartz phase with the final material composed by crystalline domains plunged into a low-density, residual amorphous matrix. A quantitative analysis of the diffraction patterns allows determining the time evolution of the relative fractions of crystal and amorphous, that was interpreted through an empirical model for the crystallization kinetics. This approach provides a very good description of the experimental data and identifies a predator-prey-like mechanism between crystal and amorphous, where the density variation acts as blocking barrier.
We report a quantitative experimental study of the crystallization kinetics of supercooled quantum liquid mixtures of para-hydrogen (pH$_2$) and ortho-deuterium (oD$_2$) by high spatial resolution Raman spectroscopy of liquid microjets. We show that in a wide range of compositions the crystallization rate of the isotopic mixtures is significantly reduced with respect to that of the pure substances. To clarify this behavior we have performed path-integral simulations of the non-equilibrium pH$_2$-oD$_2$ liquid mixtures, revealing that differences in quantum delocalization between the two isotopic species translate into different effective particle sizes. Our results provide first experimental evidence for crystallization slowdown of quantum origin, offering a benchmark for theoretical studies of quantum behavior in supercooled liquids.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا