ﻻ يوجد ملخص باللغة العربية
We propose a unified model combining the first-order liquid-liquid and the second-order ferroelectric phase transitions models and explaining various features of the $lambda$-point of liquid water within a single theoretical framework. It becomes clear within the proposed model that not only does the long-range dipole-dipole interaction of water molecules yield a large value of dielectric constant $epsilon$ at room temperatures, our analysis shows that the large dipole moment of the water molecules also leads to a ferroelectric phase transition at a temperature close to the lambda-point. Our more refined model suggests that the phase transition occurs only in the low density component of the liquid and is the origin of the singularity of the dielectric constant recently observed in experiments with supercooled liquid water at temperature T~233K. This combined model agrees well with nearly every available set of experiments and explains most of the well-known and even recently obtained results of MD simulations.
We present a review on the study of metastable silicon, primarily focusing mainly on the aspects of liquid-liquid transition, critical point and phase behaviour, structural and dynamic properties of liquid phase as well as crystal nucleation. We begi
Water shows intriguing thermodynamic and dynamic anomalies in the supercooled liquid state. One possible explanation of the origin of these anomalies lies in the existence of a metastable liquid-liquid phase transition (LLPT) between two (high and lo
A novel liquid-liquid phase transition has been proposed and investigated in a wide variety of pure substances recently, including water, silica and silicon. From computer simulations using the Stillinger-Weber classical empirical potential, Sastry a
By the Wolffs cluster Monte Carlo simulations and numerical minimization within a mean field approach, we study the low temperature phase diagram of water, adopting a cell model that reproduces the known properties of water in its fluid phases. Both