ترغب بنشر مسار تعليمي؟ اضغط هنا

Rapidly and accurately estimating brain strain and strain rate across head impact types with transfer learning and data fusion

125   0   0.0 ( 0 )
 نشر من قبل Xianghao Zhan
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

Brain strain and strain rate are effective in predicting traumatic brain injury (TBI) caused by head impacts. However, state-of-the-art finite element modeling (FEM) demands considerable computational time in the computation, limiting its application in real-time TBI risk monitoring. To accelerate, machine learning head models (MLHMs) were developed, and the model accuracy was found to decrease when the training/test datasets were from different head impacts types. However, the size of dataset for specific impact types may not be enough for model training. To address the computational cost of FEM, the limited strain rate prediction, and the generalizability of MLHMs to on-field datasets, we propose data fusion and transfer learning to develop a series of MLHMs to predict the maximum principal strain (MPS) and maximum principal strain rate (MPSR). We trained and tested the MLHMs on 13,623 head impacts from simulations, American football, mixed martial arts, car crash, and compared against the models trained on only simulations or only on-field impacts. The MLHMs developed with transfer learning are significantly more accurate in estimating MPS and MPSR than other models, with a mean absolute error (MAE) smaller than 0.03 in predicting MPS and smaller than 7 (1/s) in predicting MPSR on all impact datasets. The MLHMs can be applied to various head impact types for rapidly and accurately calculating brain strain and strain rate. Besides the clinical applications in real-time brain strain and strain rate monitoring, this model helps researchers estimate the brain strain and strain rate caused by head impacts more efficiently than FEM.

قيم البحث

اقرأ أيضاً

Wearable devices have been shown to effectively measure the head movement during impacts in sports like American football. When a head impact occurs, the device is triggered to collect and save the kinematic measurements during a predefined time wind ow. Then, based on the collected kinematics, finite element (FE) head models can calculate brain strain, which is used to evaluate the risk of mild traumatic brain injury. To find a time window that can provide a sufficient duration of kinematics for FE analysis, we investigated 118 on-field video-confirmed head impacts collected by the Stanford Instrumented Mouthguard. Because the individual differences in brain geometry influence these calculations, we included six representative brain geometries and found that larger brains need a longer time window of kinematics for accurate calculation. Among the different sizes of brains, a pre-trigger time of 20 ms and a post-trigger time of 70 ms were found to yield calculations of brain strain and strain rate that were not significantly different from calculations using the original 200 ms time window recorded by the mouthguard.
Multiple brain injury criteria (BIC) are developed to quickly quantify brain injury risks after head impacts. These BIC originated from different types of head impacts (e.g., sports and car crashes) are widely used in risk evaluation. However, the ac curacy of using the BIC on brain injury risk estimation across different types of head impacts has not been evaluated. Physiologically, brain strain is often considered the key parameter of brain injury. To evaluate the BICs risk estimation accuracy across five datasets comprising different head impact types, linear regression was used to model 95% maximum principal strain, 95% maximum principal strain at the corpus callosum, and cumulative strain damage (15%) on each of 18 BIC respectively. The results show a significant difference in the relationship between BIC and brain strain across datasets, indicating the same BIC value may suggest different brain strain in different head impact types. The accuracy of brain strain regression is generally decreasing if the BIC regression models are fit on a dataset with a different type of head impact rather than on the dataset with the same type. Given this finding, this study raises concerns for applying BIC to estimate the brain injury risks for head impacts different from the head impacts on which the BIC was developed.
Traumatic brain injury can be caused by various types of head impacts. However, due to different kinematic characteristics, many brain injury risk estimation models are not generalizable across the variety of impacts that humans may sustain. The curr ent definitions of head impact subtypes are based on impact sources (e.g., football, traffic accident), which may not reflect the intrinsic kinematic similarities of impacts across the impact sources. To investigate the potential new definitions of impact subtypes based on kinematics, 3,161 head impacts from various sources including simulation, college football, mixed martial arts, and car racing were collected. We applied the K-means clustering to cluster the impacts on 16 standardized temporal features from head rotation kinematics. Then, we developed subtype-specific ridge regression models for cumulative strain damage (using the threshold of 15%), which significantly improved the estimation accuracy compared with the baseline method which mixed impacts from different sources and developed one model (R^2 from 0.7 to 0.9). To investigate the effect of kinematic features, we presented the top three critical features (maximum resultant angular acceleration, maximum angular acceleration along the z-axis, maximum linear acceleration along the y-axis) based on regression accuracy and used logistic regression to find the critical points for each feature that partitioned the subtypes. This study enables researchers to define head impact subtypes in a data-driven manner, which leads to more generalizable brain injury risk estimation.
Cross-term spatiotemporal encoding (xSPEN) is a recently introduced imaging approach delivering single-scan 2D NMR images with unprecedented resilience to field inhomogeneities. The method relies on performing a pre-acquisition encoding and a subsequ ent image read out while using the disturbing frequency inhomogeneities as part of the image formation processes, rather than as artifacts to be overwhelmed by the application of external gradients. This study introduces the use of this new single-shot MRI technique as a diffusion-monitoring tool, for accessing regions that have hitherto been unapproachable by diffusion-weighted imaging (DWI) methods. In order to achieve this, xSPEN MRIs intrinsic diffusion weighting effects are formulated using a customized, spatially-localized b-matrix analysis; with this, we devise a novel diffusion-weighting scheme that both exploits and overcomes xSPENs strong intrinsic weighting effects. The ability to provide reliable and robust diffusion maps in challenging head and brain regions, including the eyes and the optic nerves, is thus demonstrated in humans at 3T; new avenues for imaging other body regions are also briefly discussed.
We introduce Disease Knowledge Transfer (DKT), a novel technique for transferring biomarker information between related neurodegenerative diseases. DKT infers robust multimodal biomarker trajectories in rare neurodegenerative diseases even when only limited, unimodal data is available, by transferring information from larger multimodal datasets from common neurodegenerative diseases. DKT is a joint-disease generative model of biomarker progressions, which exploits biomarker relationships that are shared across diseases. Our proposed method allows, for the first time, the estimation of plausible, multimodal biomarker trajectories in Posterior Cortical Atrophy (PCA), a rare neurodegenerative disease where only unimodal MRI data is available. For this we train DKT on a combined dataset containing subjects with two distinct diseases and sizes of data available: 1) a larger, multimodal typical AD (tAD) dataset from the TADPOLE Challenge, and 2) a smaller unimodal Posterior Cortical Atrophy (PCA) dataset from the Dementia Research Centre (DRC), for which only a limited number of Magnetic Resonance Imaging (MRI) scans are available. Although validation is challenging due to lack of data in PCA, we validate DKT on synthetic data and two patient datasets (TADPOLE and PCA cohorts), showing it can estimate the ground truth parameters in the simulation and predict unseen biomarkers on the two patient datasets. While we demonstrated DKT on Alzheimers variants, we note DKT is generalisable to other forms of related neurodegenerative diseases. Source code for DKT is available online: https://github.com/mrazvan22/dkt.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا