ﻻ يوجد ملخص باللغة العربية
Wearable devices have been shown to effectively measure the head movement during impacts in sports like American football. When a head impact occurs, the device is triggered to collect and save the kinematic measurements during a predefined time window. Then, based on the collected kinematics, finite element (FE) head models can calculate brain strain, which is used to evaluate the risk of mild traumatic brain injury. To find a time window that can provide a sufficient duration of kinematics for FE analysis, we investigated 118 on-field video-confirmed head impacts collected by the Stanford Instrumented Mouthguard. Because the individual differences in brain geometry influence these calculations, we included six representative brain geometries and found that larger brains need a longer time window of kinematics for accurate calculation. Among the different sizes of brains, a pre-trigger time of 20 ms and a post-trigger time of 70 ms were found to yield calculations of brain strain and strain rate that were not significantly different from calculations using the original 200 ms time window recorded by the mouthguard.
Brain strain and strain rate are effective in predicting traumatic brain injury (TBI) caused by head impacts. However, state-of-the-art finite element modeling (FEM) demands considerable computational time in the computation, limiting its application
Because of the relatively rigid coupling between the upper dentition and the skull, instrumented mouthguards have been shown to be a viable way of measuring head impact kinematics for assisting in understanding the underlying biomechanics of concussi
Multiple brain injury criteria (BIC) are developed to quickly quantify brain injury risks after head impacts. These BIC originated from different types of head impacts (e.g., sports and car crashes) are widely used in risk evaluation. However, the ac
Traumatic brain injury can be caused by various types of head impacts. However, due to different kinematic characteristics, many brain injury risk estimation models are not generalizable across the variety of impacts that humans may sustain. The curr
Cross-term spatiotemporal encoding (xSPEN) is a recently introduced imaging approach delivering single-scan 2D NMR images with unprecedented resilience to field inhomogeneities. The method relies on performing a pre-acquisition encoding and a subsequ