ﻻ يوجد ملخص باللغة العربية
Let $X$ be a hyperbolic curve over a field $k$ finitely generated over $mathbb{Q}$. A Galois section $s$ of $pi_{1}(X)tomathrm{Gal}(bar{k}/k)$ is birational if it lifts to a section of $mathrm{Gal}(overline{k(X)}/k(X))tomathrm{Gal}(bar{k}/k)$. Grothendiecks section conjecture predicts that every Galois section of $pi_{1}(X)$ is either geometric or cuspidal, while the birational section conjecture predicts the same for birational Galois sections. Let $t$ be an indeterminate. We prove that, if $s$ is a Galois section such that the base change $s_{k(t)}$ to $k(t)$ is birational, then $s$ is geometric or cuspidal. As a consequence we prove that the section conjecture is equivalent to Esnault and Hais cuspidalization conjecture, which states that Galois sections of hyperbolic curves over fields finitely generated over $mathbb{Q}$ are birational.
We prove the $p$-curvature conjecture for rank two vector bundles with connection on generic curves, by combining deformation techniques for families of varieties and topological arguments.
In this article, we study the Beilinson-Bloch-Kato conjecture for motives corresponding to the Rankin-Selberg product of conjugate self-dual automorphic representations, within the framework of the Gan-Gross-Prasad conjecture. We show that if the cen
The Hecke orbit conjecture asserts that every prime-to-$p$ Hecke orbit in a Shimura variety is dense in the central leaf containing it. In this paper, we prove the conjecture for certain irreducible components of Newton strata in Shimura varieties of
We prove a special case of a dynamical analogue of the classical Mordell-Lang conjecture. In particular, let $phi$ be a rational function with no superattracting periodic points other than exceptional points. If the coefficients of $phi$ are algebrai
In this paper, we prove the Uniform Mordell-Lang Conjecture for subvarieties in abelian varieties. As a byproduct, we prove the Uniform Bogomolov Conjecture for subvarieties in abelian varieties.