ترغب بنشر مسار تعليمي؟ اضغط هنا

On The Hecke Orbit Conjecture for PEL Type Shimura Varieties

120   0   0.0 ( 0 )
 نشر من قبل Luciena Xiao Xiao
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English
 تأليف Luciena Xiao Xiao




اسأل ChatGPT حول البحث

The Hecke orbit conjecture asserts that every prime-to-$p$ Hecke orbit in a Shimura variety is dense in the central leaf containing it. In this paper, we prove the conjecture for certain irreducible components of Newton strata in Shimura varieties of PEL type A and C, when $p$ is an unramified prime of good reduction. Our approach generalizes Chai and Oorts method for Siegel modular varieties.



قيم البحث

اقرأ أيضاً

172 - Adrian Vasiu 2002
Let k be a perfect field of characteristic p>0. We prove the existence of ascending and descending slope filtrations for Shimura p-divisible objects over k. We use them to classify rationally these objects over bar k. Among geometric applications, we mention two. First we formulate Manin problems for Shimura varieties of Hodge type. We solve them if either pGe 3 or p=2 and two mild conditions hold. Second we formulate integral Manin problems. We solve them for certain Shimura varieties of PEL type.
89 - Adrian Vasiu 2002
We prove the Mumford--Tate conjecture for those abelian varieties over number fields whose extensions to C have attached adjoint Shimura varieties that are products of simple, adjoint Shimura varieties of certain Shimura types. In particular, we prov e the conjecture for the orthogonal case (i.e., for the $B_n$ and $D_n^R$ Shimura types). As a main tool, we construct embeddings of Shimura varieties (whose adjoints are) of prescribed abelian type into unitary Shimura varieties of PEL type. These constructions implicitly classify the adjoints of Shimura varieties of PEL type.
134 - Ke Chen , Xin Lu , Sheng-Li Tan 2016
We prove the generic exclusion of certain Shimura varieties of unitary and orthogonal types from the Torelli locus. The proof relies on a slope inequality on surface fibration due to G. Xiao, and the main result implies that certain Shimura varieties only meet the Torelli locus in dimension zero.
79 - Yujie Xu 2020
Let $(G,X)$ be a Shimura datum of Hodge type, and $mathscr{S}_K(G,X)$ its integral model with hyperspecial level structure. We prove that $mathscr{S}_K(G,X)$ admits a closed embedding, which is compatible with moduli interpretations, into the integra l model $mathscr{S}_{K}(mathrm{GSp},S^{pm})$ for a Siegel modular variety. In particular, the normalization step in the construction of $mathscr{S}_K(G,X)$ is redundant. In particular, our results apply to the earlier integral models constructed by Rapoport and Kottwitz, as those models agree with the Hodge type integral models for appropriately chosen Shimura data.
278 - David Helm , Yichao Tian , 2014
Let $F$ be a totally real field in which a fixed prime $p$ is inert, and let $E$ be a CM extension of $F$ in which $p$ splits. We fix two positive integers $r,s in mathbb N$. We investigate the Tate conjecture on the special fiber of $G(U(r,s) times U(s,r))$-Shimura variety. We construct cycles which we conjecture to generate the Tate classes and verify our conjecture in the case of $G(U(1,s) times U(s,1))$. We also discuss the general conjecture regarding special cycles on the special fibers of unitary Shimura varieties.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا