ترغب بنشر مسار تعليمي؟ اضغط هنا

On the Beilinson-Bloch-Kato conjecture for Rankin-Selberg motives

110   0   0.0 ( 0 )
 نشر من قبل Yifeng Liu
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this article, we study the Beilinson-Bloch-Kato conjecture for motives corresponding to the Rankin-Selberg product of conjugate self-dual automorphic representations, within the framework of the Gan-Gross-Prasad conjecture. We show that if the central critical value of the Rankin-Selberg $L$-function does not vanish, then the Bloch-Kato Selmer group with coefficients in a favorable field of the corresponding motive vanishes. We also show that if the class in the Bloch-Kato Selmer group constructed from certain diagonal cycle does not vanish, which is conjecturally equivalent to the nonvanishing of the central critical first derivative of the Rankin-Selberg $L$-function, then the Bloch-Kato Selmer group is of rank one.



قيم البحث

اقرأ أيضاً

We prove the Archimedean period relations for Rankin-Selberg convolutions for $mathrm{GL}(n)times mathrm{GL}(n-1)$. This implies the period relations for critical values of the Rankin-Selberg L-functions for $mathrm{GL}(n)times mathrm{GL}(n-1)$.
168 - Fulin Chen , Binyong Sun 2013
Let $k$ be a local field of characteristic zero. Rankin-Selbergs local zeta integrals produce linear functionals on generic irreducible admissible smooth representations of $GL_n(k)times GL_r(k)$, with certain invariance properties. We show that up t o scalar multiplication, these linear functionals are determined by the invariance properties.
388 - A. Grishkov , D. Logachev 2019
Let $M$ be a T-motive. We introduce the notion of duality for $M$. Main results of the paper (we consider uniformizable $M$ over $F_q[T]$ of rank $r$, dimension $n$, whose nilpotent operator $N$ is 0): 1. Algebraic duality implies analytic duality (Theorem 5). Explicitly, this means that the lattice of the dual of $M$ is the dual of the lattice of $M$, i.e. the transposed of a Siegel matrix of $M$ is a Siegel matrix of the dual of $M$. 2. Let $n=r-1$. There is a 1 -- 1 correspondence between pure T-motives (all they are uniformizable), and lattices of rank $r$ in $C^n$ having dual (Corollary 8.4).
119 - Luciena Xiao Xiao 2020
The Hecke orbit conjecture asserts that every prime-to-$p$ Hecke orbit in a Shimura variety is dense in the central leaf containing it. In this paper, we prove the conjecture for certain irreducible components of Newton strata in Shimura varieties of PEL type A and C, when $p$ is an unramified prime of good reduction. Our approach generalizes Chai and Oorts method for Siegel modular varieties.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا