ﻻ يوجد ملخص باللغة العربية
Future space-borne gravitational-wave detectors will observe the gravitational waves in the milli-Hz. Extreme-mass-ratio inspirals with central supermassive black holes are very important sources that could provide the information of the vicinity of black holes. The event horizon separates the inner region of a black hole and there is nothing that can escape from this region. When the central supermassive compact object is a regular and horizonless rotating boson star, a small body could pass through the center and follow novel types of orbits. These will generate the gravitational waves that can not be obtained in the scenario corresponding to an extreme-mass-ratio inspiral with a central supermassive black hole. This can be used to examine whether a supermassive rotating boson star is present at the centers of galaxies. In this work, we consider an extreme-mass-ratio inspiral system described by a small compact object inspiralling into a central supermassive rotating boson star. Integrating four types of special equatorial geodesics and using the numerical kludge method with quadrupole approximation, we obtain the corresponding gravitational waveforms and find that there are high-frequency gravitational radiation pulses in such system. The frequencies of the gravitational radiation pulses could be in the magnitude of $10^{-1}$Hz and the whole gravitational wave parts are in the milli-Hz. By assuming the masses of the central supermassive rotating boson star and small compact object to be $10^6 M_odot$ and $10 M_odot$ and assuming a distance of $1text{Gpc}$, we show that the gravitational radiation pulses could be detected by the space-borne gravitational-wave detectors. Our results will provide a possible evidence to distinguish the astrophysical compact objects in the galactic centers.
An extreme mass ratio inspiral takes place when a compact stellar object is inspiraling into a supermassive black hole due to gravitational radiation reaction. Gravitational waves (GWs) from this system can be calculated using the Teukolsky equation
Extreme-mass-ratio inspirals (EMRIs) of ~ 1-10 solar-mass compact objects into ~ million solar-mass massive black holes can serve as excellent probes of strong-field general relativity. The Laser Interferometer Space Antenna (LISA) is expected to det
Gravitational wave emission from extreme mass ratio binaries (EMRBs) should be detectable by the joint NASA-ESA LISA project, spurring interest in analytical and numerical methods for investigating EMRBs. We describe a discontinuous Galerkin (dG) met
A powerful technique to calculate gravitational radiation from binary systems involves a perturbative expansion: if the masses of the two bodies are very different, the small body is treated as a point particle of mass $m_p$ moving in the gravitation
The planned Laser Interferometer Space Antenna (LISA) is expected to detect gravitational wave signals from ~100 extreme-mass-ratio inspirals (EMRIs) of stellar-mass compact objects into massive black holes. The long duration and large parameter spac