ﻻ يوجد ملخص باللغة العربية
Extreme-mass-ratio inspirals (EMRIs) of ~ 1-10 solar-mass compact objects into ~ million solar-mass massive black holes can serve as excellent probes of strong-field general relativity. The Laser Interferometer Space Antenna (LISA) is expected to detect gravitational wave signals from apprxomiately one hundred EMRIs per year, but the data analysis of EMRI signals poses a unique set of challenges due to their long duration and the extensive parameter space of possible signals. One possible approach is to carry out a search for EMRI tracks in the time-frequency domain. We have applied a time-frequency search to the data from the Mock LISA Data Challenge (MLDC) with promising results. Our analysis used the Hierarchical Algorithm for Clusters and Ridges to identify tracks in the time-frequency spectrogram corresponding to EMRI sources. We then estimated the EMRI source parameters from these tracks. In these proceedings, we discuss the results of this analysis of the MLDC round 1.3 data.
The planned Laser Interferometer Space Antenna (LISA) is expected to detect gravitational wave signals from ~100 extreme-mass-ratio inspirals (EMRIs) of stellar-mass compact objects into massive black holes. The long duration and large parameter spac
The future space mission LISA will observe a wealth of gravitational-wave sources at millihertz frequencies. Of these, the extreme-mass-ratio inspirals of compact objects into massive black holes are the only sources that combine the challenges of st
In this paper we describe a Bayesian inference framework for analysis of data obtained by LISA. We set up a model for binary inspiral signals as defined for the Mock LISA Data Challenge 1.2 (MLDC), and implemented a Markov chain Monte Carlo (MCMC) al
We report on the performance of an end-to-end Bayesian analysis pipeline for detecting and characterizing galactic binary signals in simulated LISA data. Our principal analysis tool is the Blocked-Annealed Metropolis Hasting (BAM) algorithm, which ha
We present in this paper a Bayesian parameter estimation method for the analysis of interferometric gravitational wave observations of an inspiral of binary compact objects using data recorded simultaneously by a network of several interferometers at