ﻻ يوجد ملخص باللغة العربية
Gravitational wave emission from extreme mass ratio binaries (EMRBs) should be detectable by the joint NASA-ESA LISA project, spurring interest in analytical and numerical methods for investigating EMRBs. We describe a discontinuous Galerkin (dG) method for solving the distributionally forced 1+1 wave equations which arise when modeling EMRBs via the perturbation theory of Schwarzschild blackholes. Despite the presence of jump discontinuities in the relevant polar and axial gravitational master functions, our dG method achieves global spectral accuracy, provided that we know the instantaneous position, velocity, and acceleration of the small particle. Here these variables are known, since we assume that the particle follows a timelike geodesic of the Schwarzschild geometry. We document the results of several numerical experiments testing our method, and in our concluding section discuss the possible inclusion of gravitational self-force effects.
A powerful technique to calculate gravitational radiation from binary systems involves a perturbative expansion: if the masses of the two bodies are very different, the small body is treated as a point particle of mass $m_p$ moving in the gravitation
We describe the hyperboloidal compactification for Teukolsky equations in Kerr spacetime. We include null infinity on the numerical grid by attaching a hyperboloidal layer to a compact domain surrounding the rotating black hole and the orbit of an in
We describe a new kludge scheme to model the dynamics of generic extreme-mass-ratio inspirals (EMRIs; stellar compact objects spiraling into a spinning supermassive black hole) and their gravitational-wave emission. The Chimera scheme is a hybrid met
An extreme mass ratio inspiral takes place when a compact stellar object is inspiraling into a supermassive black hole due to gravitational radiation reaction. Gravitational waves (GWs) from this system can be calculated using the Teukolsky equation
Binary-black-hole orbits precess when the black-hole spins are mis-aligned with the binarys orbital angular momentum. The apparently complicated dynamics can in most cases be described as simple precession of the orbital angular momentum about an app