ترغب بنشر مسار تعليمي؟ اضغط هنا

Edge Statistics for Lozenge Tilings of Polygons, I: Concentration of Height Function on Strip Domains

135   0   0.0 ( 0 )
 نشر من قبل Jiaoyang Huang
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English
 تأليف Jiaoyang Huang




اسأل ChatGPT حول البحث

In this paper we study uniformly random lozenge tilings of strip domains. Under the assumption that the limiting arctic boundary has at most one cusp, we prove a nearly optimal concentration estimate for the tiling height functions and arctic boundaries on such domains: with overwhelming probability the tiling height function is within $n^delta$ of its limit shape, and the tiling arctic boundary is within $n^{1/3+delta}$ to its limit shape, for arbitrarily small $delta>0$. This concentration result will be used in [AH21] to prove that the edge statistics of simply-connected polygonal domains, subject to a technical assumption on their limit shape, converge to the Airy line ensemble.

قيم البحث

اقرأ أيضاً

We consider uniformly random lozenge tilings of simply connected polygons subject to a technical assumption on their limit shape. We show that the edge statistics around any point on the arctic boundary, that is not a cusp or tangency location, conve rge to the Airy line ensemble. Our proof proceeds by locally comparing these edge statistics with those for a random tiling of a hexagon, which are well understood. To realize this comparison, we require a nearly optimal concentration estimate for the tiling height function, which we establish by exhibiting a certain Markov chain on the set of all tilings that preserves such concentration estimates under its dynamics.
87 - Jiaoyang Huang 2020
In this paper we study height fluctuations of random lozenge tilings of polygonal domains on the triangular lattice through nonintersecting Bernoulli random walks. For a large class of polygons which have exactly one horizontal upper boundary edge, w e show that these random height functions converge to a Gaussian Free Field as predicted by Kenyon and Okounkov [28]. A key ingredient of our proof is a dynamical version of the discrete loop equations as introduced by Borodin, Guionnet and Gorin [5], which might be of independent interest.
We present classes of models in which particles are dropped on an arbitrary fixed finite connected graph, obeying adhesion rules with screening. We prove that there is an invariant distribution for the resulting height profile, and Gaussian concentra tion for functions depending on the paths of the profiles. As a corollary we obtain a law of large numbers for the maximum height. This describes the asymptotic speed with which the maximal height increases. The results incorporate the case of independent particle droppings but extend to droppings according to a driving Markov chain, and to droppings with possible deposition below the top layer up to a fixed finite depth, obeying a non-nullness condition for the screening rule. The proof is based on an analysis of the Markov chain on height-profiles using coupling methods. We construct a finite communicating set of configurations of profiles to which the chain keeps returning.
We prove a new concentration inequality for U-statistics of order two for uniformly ergodic Markov chains. Working with bounded and $pi$-canonical kernels, we show that we can recover the convergence rate of Arcones and Gin{e} who proved a concentrat ion result for U-statistics of independent random variables and canonical kernels. Our result allows for a dependence of the kernels $h_{i,j}$ with the indexes in the sums, which prevents the use of standard blocking tools. Our proof relies on an inductive analysis where we use martingale techniques, uniform ergodicity, Nummelin splitting and Bernsteins type inequality. Assuming further that the Markov chain starts from its invariant distribution, we prove a Bernstein-type concentration inequality that provides sharper convergence rate for small variance terms.
We show that the height function of the six-vertex model, in the parameter range $mathbf a=mathbf b=1$ and $mathbf cge1$, is delocalized with logarithmic variance when $mathbf cle 2$. This complements the earlier proven localization for $mathbf c>2$. Our proof relies on Russo--Seymour--Welsh type arguments, and on the local behaviour of the free energy of the cylindrical six-vertex model, as a function of the unbalance between the number of up and down arrows.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا