ﻻ يوجد ملخص باللغة العربية
We consider uniformly random lozenge tilings of simply connected polygons subject to a technical assumption on their limit shape. We show that the edge statistics around any point on the arctic boundary, that is not a cusp or tangency location, converge to the Airy line ensemble. Our proof proceeds by locally comparing these edge statistics with those for a random tiling of a hexagon, which are well understood. To realize this comparison, we require a nearly optimal concentration estimate for the tiling height function, which we establish by exhibiting a certain Markov chain on the set of all tilings that preserves such concentration estimates under its dynamics.
In this paper we study uniformly random lozenge tilings of strip domains. Under the assumption that the limiting arctic boundary has at most one cusp, we prove a nearly optimal concentration estimate for the tiling height functions and arctic boundar
In this paper we study height fluctuations of random lozenge tilings of polygonal domains on the triangular lattice through nonintersecting Bernoulli random walks. For a large class of polygons which have exactly one horizontal upper boundary edge, w
We prove that for the $d$-regular tessellations of the hyperbolic plane by $k$-gons, there are exponentially more self-avoiding walks of length $n$ than there are self-avoiding polygons of length $n$, and we deduce that the self-avoiding walk is ball
Our work deals with symmetric rational functions and probabilistic models based on the fully inhomogeneous six vertex (ice type) model satisfying the free fermion condition. Two families of symmetric rational functions $F_lambda,G_lambda$ are defined
We access the edge of Gaussian beta ensembles with one spike by analyzing high powers of the associated tridiagonal matrix models. In the classical cases beta=1, 2, 4, this corresponds to studying the fluctuations of the largest eigenvalues of additi