ترغب بنشر مسار تعليمي؟ اضغط هنا

An analysis of polarized parton distribution functions with nonlinear QCD evolution equations

120   0   0.0 ( 0 )
 نشر من قبل Rong Wang
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the polarized parton distribution functions from the QCD analysis of the worldwide deep inelastic scattering data with polarized beams, based on the dynamical parton distribution model. All the sea quarks and gluons are dynamically generated from QCD radiations, with the nonperturbative input contains only the polarized valence quark distributions. This approach leads to a simple parametrization, which has only four free parameters. In the analysis, we apply the DGLAP equations with parton-parton recombination corrections. The parameterized nonperturbative input at an extremely low $Q_0^2$ reproduces well the spin-dependent structure functions measured at high $Q^{2}$. Comparisons with some other polarized parton distribution functions are also shown. Our analysis gives the positive polarized gluon distribution and it suggests that the gluon distribution plays an important role to the proton spin content. The polarized antiquark distributions are non-zero at high $Q^2$, based on this dynamical parton model analysis.

قيم البحث

اقرأ أيضاً

Initial state evolution in parton shower event generators involves parton distribution functions. We examine the probability for the system to evolve from a higher scale to a lower scale without an initial state splitting. A simple argument suggests that this probability, when multiplied by the ratio of the parton distributions at the two scales, should be independent of the parton distribution functions. We call this the PDF property. We examine whether the PDF property actually holds using Pythia and Deductor. We also test a related property for the Deductor shower and discuss the physics behind the results.
111 - Y. Goto , N. Hayashi , M. Hirai 2000
Polarized parton distribution functions are determined by using world data from the longitudinally polarized deep inelastic scattering experiments. A new parametrization of the parton distribution functions is adopted by taking into account the posit ivity and the counting rule. From the fit to the asymmetry data A_1, the polarized distribution functions of u and d valence quarks, sea quarks, and gluon are obtained. The results indicate that the quark spin content is DeltaSigma=0.20 and 0.05 in the leading order (LO) and the next-to-leading-order (NLO) MS-bar scheme, respectively. However, if x dependence of the sea-quark distribution is fixed at small x by perturbative QCD and Regge theory, it becomes Delta Sigma=0.24 ~ 0.28 in the NLO. The small-x behavior cannot be uniquely determined by the existing data, which indicates the importance of future experiments. From our analysis, we propose one set of LO distributions and two sets of NLO ones as the longitudinally-polarized parton distribution functions.
We investigate the parton distribution functions (PDFs) of the pion and kaon from the eigenstates of a light-front effective Hamiltonian in the constituent quark-antiquark representation suitable for low-momentum scale applications. By taking these s cales as the only free parameters, the valence quark distribution functions of the pion, after QCD evolving, are consistent with the E615 experiment at Fermilab. In addition, the ratio of the up quark distribution in the kaon to that in the pion also agrees with the NA3 experimental result at CERN.
We present an improved leading-order global DGLAP analysis of nuclear parton distribution functions (nPDFs), supplementing the traditionally used data from deep inelastic lepton-nucleus scattering and Drell-Yan dilepton production in proton-nucleus c ollisions, with inclusive high-$p_T$ hadron production data measured at RHIC in d+Au collisions. With the help of an extended definition of the $chi^2$ function, we now can more efficiently exploit the constraints the different data sets offer, for gluon shadowing in particular, and account for the overall data normalization uncertainties during the automated $chi^2$ minimization. The very good simultaneous fit to the nuclear hard process data used demonstrates the feasibility of a universal set of nPDFs, but also limitations become visible. The high-$p_T$ forward-rapidity hadron data of BRAHMS add a new crucial constraint into the analysis by offering a direct probe for the nuclear gluon distributions -- a sector in the nPDFs which has traditionally been very badly constrained. We obtain a strikingly stronger gluon shadowing than what has been estimated in previous global analyses. The obtained nPDFs are released as a parametrization called EPS08.
We present the first direct calculation of the transversity parton distribution function within the nucleon from lattice QCD. The calculation is performed using simulations with the light quark mass fixed to its physical value and at one value of the lattice spacing. Novel elements of the calculations are non-perturbative renormalization and extraction of a formula for the matching to light-cone PDFs. Final results are presented in the $overline{rm MS}$ scheme at a scale of $sqrt{2}$ GeV.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا