ترغب بنشر مسار تعليمي؟ اضغط هنا

Evolution of parton showers and parton distribution functions

189   0   0.0 ( 0 )
 نشر من قبل Davison E. Soper
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Initial state evolution in parton shower event generators involves parton distribution functions. We examine the probability for the system to evolve from a higher scale to a lower scale without an initial state splitting. A simple argument suggests that this probability, when multiplied by the ratio of the parton distributions at the two scales, should be independent of the parton distribution functions. We call this the PDF property. We examine whether the PDF property actually holds using Pythia and Deductor. We also test a related property for the Deductor shower and discuss the physics behind the results.

قيم البحث

اقرأ أيضاً

We present the determination of Transverse Momentum Dependent (TMD) parton distributions from Monte Carlo parton showers. We investigate the effective TMD distributions obtained from the PYTHIA8 and HERWIG6 parton showers and compare them to the TMD distributions determined within the Parton Branching method.
Parton shower event generators typically approximate evolution of QCD color so that only contributions that are leading in the limit of an infinite number of colors are retained. Our parton shower generator, Deductor, has used an LC+ approximation th at is better, but still quite limited. In this paper, we introduce a new scheme for color in which the approximations can be systematically improved. That is, one can choose the theoretical accuracy level, but the accuracy level that is practical is limited by the computer resources available.
153 - K. Kovarik , T. Jezo , A. Kusina 2013
We show for the first time preliminary results of nuclear parton distribution function analysis of charged lepton DIS and Drell-Yan data within the CTEQ framework including error PDFs. We compare our error estimates to estimates of different nPDF groups.
We present the CTEQ6HQ parton distribution set which is determined in the general variable flavor number scheme which incorporates heavy flavor mass effects; hence, this set provides advantages for precision observables which are sensitive to charm a nd bottom quark masses. We describe the analysis procedure, examine the predominant features of the new distributions, and compare with previous distributions. We also examine the uncertainties of the strange quark distribution and how the the recent NuTeV dimuon data constrains this quantity.
70 - R. Kuhn 2000
A Monte-Carlo event-generator has been developed which is dedicated to simulate electron-positron annihilations. Especially a new approach for the combination of matrix elements and parton showers ensures the independence of the hadronization paramet ers from the CMS energy. This enables for the first time the description of multijet-topologies, e.g. four jet angles, over a wide range of energy, without changing any parameter of the model. Covering all processes of the standard model our simulator is capable to describe experiments at present and future accelerators, i.e. the LEP collider and a possible Next Linear Collider(NLC).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا