ﻻ يوجد ملخص باللغة العربية
We present an approach to handle Dirichlet type nonlocal boundary conditions for nonlocal diffusion models with a finite range of nonlocal interactions. Our approach utilizes a linear extrapolation of prescribed boundary data. A novelty is, instead of using local gradients of the boundary data that are not available a priori, we incorporate nonlocal gradient operators into the formulation to generalize the finite differences-based methods which are pervasive in literature; our particular choice of the nonlocal gradient operators is based on the interplay between a constant kernel function and the geometry of nonlocal interaction neighborhoods. Such an approach can be potentially useful to address similar issues in peridynamics, smoothed particle hydrodynamics and other nonlocal models. We first show the well-posedness of the newly formulated nonlocal problems and then analyze their asymptotic convergence to the local limit as the nonlocality parameter shrinks to zero. We justify the second order localization rate, which is the optimal order attainable in the absence of physical boundaries.
In this paper we consider second order parabolic partial differential equations subject to the Dirichlet boundary condition on smooth domains. We establish weighted $L_{q}$-maximal regularity in weighted Triebel-Lizorkin spaces for such parabolic pro
This paper derives physically meaningful boundary conditions for fractional diffusion equations, using a mass balance approach. Numerical solutions are presented, and theoretical properties are reviewed, including well-posedness and steady state solu
This is the first part of our study of inertial manifolds for the system of 1D reaction-diffusion-advection equations which is devoted to the case of Dirichlet or Neumann boundary conditions. Although this problem does not initially possess the spect
We show how the Stefan type free boundary problem with random diffusion in one space dimension can be approximated by the corresponding free boundary problem with nonlocal diffusion. The approximation problem is a slightly modified version of the non
In this paper we develop an existence theory for the nonlinear initial-boundary value problem with singular diffusion $partial_t u = text{div}(k(x) abla G(u))$, $u|_{t=0}=u_0$ with Neumann boundary conditions $k(x) abla G(u)cdot u = 0$. Here $xin Bs