ﻻ يوجد ملخص باللغة العربية
This paper derives physically meaningful boundary conditions for fractional diffusion equations, using a mass balance approach. Numerical solutions are presented, and theoretical properties are reviewed, including well-posedness and steady state solutions. Absorbing and reflecting boundary conditions are considered, and illustrated through several examples. Reflecting boundary conditions involve fractional derivatives. The Caputo fractional derivative is shown to be unsuitable for modeling fractional diffusion, since the resulting boundary value problem is not positivity preserving.
We identify the stochastic processes associated with one-sided fractional partial differential equations on a bounded domain with various boundary conditions. This is essential for modelling using spatial fractional derivatives. We show well-posednes
We consider self-similar approximations of nonlinear hyperbolic systems in one space dimension with Riemann initial data and general diffusion matrix. We assume that the matrix of the system is strictly hyperbolic and the diffusion matrix is close to
In this paper, we consider artificial boundary conditions for the linearized mixed Korteweg-de Vries (KDV) Benjamin-Bona-Mahoney (BBM) equation which models water waves in the small amplitude, large wavelength regime. Continuous (respectively discret
We present a construction of harmonic functions on bounded domains for the spectral fractional Laplacian operator and we classify them in terms of their divergent profile at the boundary. This is used to establish and solve boundary value problems as
In this paper we develop an existence theory for the nonlinear initial-boundary value problem with singular diffusion $partial_t u = text{div}(k(x) abla G(u))$, $u|_{t=0}=u_0$ with Neumann boundary conditions $k(x) abla G(u)cdot u = 0$. Here $xin Bs