ﻻ يوجد ملخص باللغة العربية
We show how the Stefan type free boundary problem with random diffusion in one space dimension can be approximated by the corresponding free boundary problem with nonlocal diffusion. The approximation problem is a slightly modified version of the nonlocal diffusion problem with free boundaries considered in [4,8]. The proof relies on the introduction of several auxiliary free boundary problems and constructions of delicate upper and lower solutions for these problems. As usual, the approximation is achieved by choosing the kernel function in the nonlocal diffusion term of the form $J_epsilon(x)=frac 1epsilon J(frac xepsilon)$ for small $epsilon>0$, where $J(x)$ has compact support. We also give an estimate of the error term of the approximation by some positive power of $epsilon$.
We study the radially symmetric high dimensional Fisher-KPP nonlocal diffusion equation with free boundary, and reveal some fundamental differences from its one dimensional version considered in cite{cdjfa} recently. Technically, this high dimensiona
A reaction-diffusion equation with power nonlinearity formulated either on the half-line or on the finite interval with nonzero boundary conditions is shown to be locally well-posed in the sense of Hadamard for data in Sobolev spaces. The result is e
We consider a half-order time-fractional diffusion equation in an arbitrary dimension and investigate inverse problems of determining the source term or the diffusion coefficient from spatial data at an arbitrarily fixed time under some additional as
Consider the surface quasi-geostrophic equation with random diffusion, white in time. We show global existence and uniqueness in high probability for the associated Cauchy problem satisfying a Gevrey type bound. This article is inspired by recent work of Glatt-Holtz and Vicol.
We present an approach to handle Dirichlet type nonlocal boundary conditions for nonlocal diffusion models with a finite range of nonlocal interactions. Our approach utilizes a linear extrapolation of prescribed boundary data. A novelty is, instead o